Jump to content
SAU Community

Recommended Posts

I've been quoted for a day's labour for it to be done with the engine in. Is this realistic? Also is there more room for error when the engine hasn't been removed, therefore creating problems?

I'd say pump is bigger?

More flow and pressure than stock....at the same rpm.

damn that could be bad then as i want to use this car for drift, i dont want to much oil getting to the head, mmmm or maybe it will just read at 4 on first start up cause the oil is cold, i havent driven the car yet or let the oil warm up so most likely it will drop in oil pressure with the oil been warm? any thoughts about this?

cheers jv

Hey guys, is it possible to install a Sump Baffle Kit without pulling out the engine? I've rang about 5 workshops, and out of those 5 only one was willing to do it without pulling out the engine, so I wonder whether it can be done at all or if it can be done but it will be a shit job.

yes it can be done

Boostworx in SA do it that way

I'm not sure of the exact details of how its done but its easy to do apparently

Cubes might know

damn that could be bad then as i want to use this car for drift, i dont want to much oil getting to the head, mmmm or maybe it will just read at 4 on first start up cause the oil is cold, i havent driven the car yet or let the oil warm up so most likely it will drop in oil pressure with the oil been warm? any thoughts about this?

cheers jv

When oil is at 80 degrees temp it should be at around (roughly) 20 psi

When it's cold oil pressure will be a lot higher.

What size is recommended for the return line coming from the back of the head to the sump. I was thinking about having a plug pressed into the back of the head that extends slightly outwards towards the rear of the car like other have done before instead of having to put a 90 Degree elbow back there. I was just curious what size (AN) the fitting and line should be.

its possible but not easy to do in the car. I was most worried about properly cleaning and resealing the sump with goop. so I took it out instead.

if enough of that stuff gets stuck in your oil pickup, bye bye motor

i did the rb30det oil pump with engine in the car, did not take the sump completly out. used heaps of goo and its not leaking so all is good :blink:

its possible but not easy to do in the car. I was most worried about properly cleaning and resealing the sump with goop. so I took it out instead.

if enough of that stuff gets stuck in your oil pickup, bye bye motor

  • 3 weeks later...

Hello,

These are recommended to do for drag/circuit or drift cars with after market oil pumps

QOUTE

1.Block off one oil feed in the block (RB26’s have this standard)

2.Fit an appropriately sized restrictor to the other feed. The size of the oil pump is one of the determinates for the size of the restrictor, ie; a high flow, high pressure pump needs a smaller restrictor. Constant higher RPM needs a smaller restrictor etc.

3. Fit an external oil return from the rear of the cylinder head to the sump

4. Drill out the oil return galleries in the head and block

5. Machine around the oil return galleries to facilitate access for the oil

QUOTE

I am running a N1 pump.

Can anyone give me the right sizes I will need to drill out.

1-the sump(5) 2mm holes to?

2-the return oil supply to the sump(Block and Head) to?

A 1.5mm Tomie restrictor and Sump baffle will be used and No external oil return.

The car will mostly be run on the street with little or no drag/circuit use.

Thanks in advance?

I hope this helps with the external drain..

fitting2.jpg

This is a fitting that i made for the oil return... As for oil restrictor i am not 100% sure but people run a 1.5mm tomei one or a brass one like i have made..

DSC01197.jpg

Hope this helps

regarding restrictors and such, what kind of restrictors should one use on a rb20 using a n1 oil pump?

also ive a shot the back of my head and not sure where i should fit the external drain, advice on both q's is always appreciated.

  • 3 weeks later...
Sorry to bring this back from the dead.

I plan on doing Tomei sump mod, and probably the line from rear of head to sump.

I talked to my machnist and he says the restrictor seems like a reasonable idea to limit flow for oil surge issue. The problem he says for my application is he's worried about the hydraulic lifters with the oil gallery restrictor. He described a VERY similar problem that can happen to the individual on this forum who ended up having lifter noise.

My application is for street driving and occasional/frequent drag racing and less occasional road racing.

The restrictor gives lower oil pressure in the galleys for the lifters. This lower pressure allows entrained air in the oil supply to coalesce and interfere with lifter operations. Under higher pressure in the circuit prior to the restrictor the bubbles are smaller. This decrease in size is one of the reasons high pressure is used in oil circuits.

If you are running mechanical versus hydraulic lifters restricting the oil supply to the head is less problematic with respect to entrained air.

I am trying to do as much research as possible on the RB motors, and being from the USA makes it a lil difficult as the motor is rare, and most information is in Japanese. I have an RB20DET, and the last thing I want is oil starvation, as the parts to repair it are expensive and hard to come by. I do have a few questions regarding this topic.

-It seems this is an issue with all RB motors, is this true?

-Will restricting the oil to the head cause any problems?

-Has anyone considered having their crankshaft, connecting rods, and the underside of their pistons coated with an oil shedding material such as teflon?

If this is an issue with all RB series motors why didnt Nissan address the issue by restricting oil to the head from the factory? Did they determine that reducing oil to the head would cause more harm? An oil shedding material coating the internals of the engine would allow the pan to fill faster, and create more horsepower as the RPMs climbed.

One of the restrictions on the efforts of the Nissan engineers was/is the "corporate" hump in the rear of the oil pan. This hump is present to allow easier access to torque converter bolts (I was told this and assume it is correct). The hump creates a large problem because under high G conditions the oil naturally migrates to the rear of the pan. The volume that the hump displaces and its ramping effect create a churning zone for oil where the oil becomes highly aerated -- this is also the principal drain zone for the heads. Get rid of the hump. If you carefully examine the engineering on the SR20 you can see the problems the designers had with the local high pressure zone created in the 4th bay by the hump.

Increasing the amount of oil in the pan is problematic because at the G-limit of the design the excess oil naturally migrates to this same zone. This situation parallels the failure mode for the Toyota 2ZZ engine in the Spyder and Elise, both of which can exceed the 1G design limit of the stock pan. The high aeration of the oil causes the failure of the Geroter pump. If the pump can withstand the aeration then the problem would shift to the first rods to receive the mixture. In the Porsche 928 and 944 engines this lead to the classic 2/6 rod failures. Looking at the Tomei drawing of the oil circuit it looks like rods three and four would be hit. Failures of the number 6 cylinder would likely be due to localized overloading of the ring pack and detonation or incipient detonation. Because of the hump there is no windage control in the last bay. A good solution to this would be a dual pump as in the BMW M3 (S50 engine) where the secondary pump could scavange from this zone and transport the oil back to the sump well. This is passing into the transition from wetsumps to drysumps. The Porsche integrated drysump takes this a step further (a type of active wetsump).

I only have an RB26DETT pan (with AWD) to look at. In this pan, the witness marks from the oil indicate that it normally operates with 2 quarts or liters resident in the sump proper, the balance being in circulation. This is a fairly typical amount.

"I only have an RB26DETT pan (with AWD) to look at. In this pan, the witness marks from the oil indicate that it normally operates with 2 quarts or liters resident in the sump proper, the balance being in circulation. This is a fairly typical amount."

absolutely agreed....in road car use. as soon as you keep the revs up for a while they run dangerously low on available oil for the pick up.

you obviously have extensive experience with oil issues - how would you modify the sump for more reliable oil pick up??

"I only have an RB26DETT pan (with AWD) to look at. In this pan, the witness marks from the oil indicate that it normally operates with 2 quarts or liters resident in the sump proper, the balance being in circulation. This is a fairly typical amount."

absolutely agreed....in road car use. as soon as you keep the revs up for a while they run dangerously low on available oil for the pick up.

you obviously have extensive experience with oil issues - how would you modify the sump for more reliable oil pick up??

I heard of people putting trap door systems into their sump..Its like a little box with flaps to let oil into the box and keep it there (i think that this is the principle behind it). This is an option.

  • 3 weeks later...

i found this today but im not sure what the note means this is what it said,(combine with std Orifice use For RB25&20, ONLY solid type is available (cannot used on lash type) can some one translate.

post-26570-1226727482_thumb.jpg

post-26570-1226727838_thumb.jpg

  • 3 months later...

hey hope you guys can help a gimp out

I a building an rb30det for street use and have a few questions. I am running the rb25de head (non vvt) and am wondering which feed i restrict and which i block off, i understand there are only 2?

do i block off the one closest to flywheel or closest to cam gears? Does any one have a photo or drawing of the job (birds eye view or something)?

Hope you can help a nub out

Cheers

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I mean he could post them to imgur or the like and create a link. But yeah, spam bots absolutely will post pictures in their first posts.
    • Ah ok, reason I asked was for the sake of not having to upgrade everything if the turbo couldn't be capped.
    • pffft! My alignments are starting to take 3-4 weeks each. Bugger overnight - that would be a dream! Overnight is when I leave it on stands with the rear suspension in pieces, hoping I can remember where I was at when I come back to it. I have to set the car up on a level surface so I can get decent camber measurements, then try to set the RUCAs to the right length to get that right. Then I have to put the car somewhere else where I have enough room to set up the bumpsteer gauge (laser, paper, mirror), so I can dial out that. Then I need to go measure camber again because changing the tension arm length affects that also. Then I need to measure toe, and I can't do that to my own satisfaction at home, so I have to put it on an actual aligner. Then I have to go back and fix the camber again, and if that took more than a half a turn, decide if I want to set up the bumpsteer measurements again. I previously had the bumpsteer almost completely banished and then I started changing things again! And that's only the rear end. Not even gotten to talking about the front yet. And this has been going on in the context of me discovering a seized bolt in the LHR FUCA bush at the upright, hence needing total disassembly to replace that bush and the others that were not far away from the same outcome, replacing sphericals in the front end and making a mistake that resulted in needing to do it again, which is only half done right now. It's a selfmade nightmare. Only have self to blame, etc etc. But regardless, I am so complelely unable to utilise the services of a normal wheel aligner that I have no choice. I haven't found a shop in my city that does "race" alignments - and by that I don't mean I want my car to be set up for racing, but the set of adjustments that I have available and that need to be used to do the alignment are the same as you'd find on a race car. I haven't looked everywhere, but there doesn't appear to be the equivalent of the motorsport focused shops that are present in Sydney and Melbourne. And such an alignment would cost $300, and you only want to do it once in a while, and you don't want to find out that you have to replace bushes and bearings and such while you are spending that $300 so you have to come back and spend it again a week later. So I stay living in my self made nightmare for the moment.  
    • Well, yeah, obviously. But then you have a turbo with 270kW "design", meaning it will have the higher boost threshold and lag of a bigger turbo, but only doing the work of a smaller turbo. That's the suck. That's actually exactly where I am right now, because my stocker exploded and I got Tao to do a highflow for me. I got a low pressure actuator on it and don't push it past ~10 psi or so, where the stocker was being run at ~12 psi. it makes a little more power than the stocker did, but it lags like a bitch. But, if I run any more boost it starts to ping and the ECU goes into panic mode, which cuts all the fun, so it clearly needs to be tuned. But, until such time as I (which is not I, it's my bro-in-law) can actually get the dyno working again, and get some injectors, and do all the swap over of those and the R35 AFM, I can't attempt to use the turbo the way it really deserves to. So what I have now is something that drives worse than what it did before it filled the cat with little pieces of turbine. I will tune it eventually, and probably only push it up to ~250-270 rwkW, which is pretty close to the max for that highflow anyway. I would imagine that by getting the tune right, and with newer betterrer injectors, we can probably make the boost come on a little earlier than it does now.** And if I do not think that the top end reward is worth the low end sacrifice, I will sell it off and convert to a G30, because the smaller ones of those come on boost very nicely on a 25 and make more power than I realistically need or want. The only reason I didn't do it at the time the turbo blew up is that I wasn't ready to sink a lot of money into an Artec manifold, reverse rotation turbo, the AFM and injector upgrade that would have been immediately compulsory, and the dyno was being problematic.*** It was easier and faster to just put the highflow on. And then, as I mentioned in an earlier post, even that is not "easy", because Tao's highflows use a shorter core than the Hitachi, so the compressor housing moves backwards in the bay, necessitating that all of the pipework had to get modded. ** And maybe just maybe, check the valve clearances and put new shims through, because I have recently seen firsthand on another motor that sloppy clearances on the shims can cost a lot of effective timing and lift and really slow an engine down. 3S-GTE in a Caldina got new shims, closing the clearances from just above the max to right down near the minimum, and it is a massively different car to drive. On boost the better part of 1000 rpm earlier!
    • ooooooh so this is where they get posted  Was at a wedding that day anyway, but the next one I will be there for SURE.
×
×
  • Create New...