Jump to content
SAU Community

Recommended Posts

  • Replies 64
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

I've got a rb20det turbo laying around but not willing to waste it on this experiment, as I don't feel ceramic turbines fail from wheel speed alone.

thats your perogative mate.

i know for a fact that the egt is the cause and all i was doing was offerring a chance to prove it to you all

I have to agree on the EGT. It should be a heads up guage for track work.

I haven't had time to respond but have been doing some research. Some SAE papers have indicated EGT's as a primary cause of failure of ceramic turbine wheels, because the adhesive is not up to the high temps or through a delta in the rate of thermal expansion. I'm still attempting to source a 1989 SAE paper on Garretts problems with ceramic turbines as that would have direct relevance.

An extract from one..

While this performance advantage [low spool times] is the major factor in the consideration of ceramics for the rotors, the

resistance of silicon nitride to the high temperature exhaust is also. Additionally, a lower coefficient of

expansion can mean a smaller air gap between rotor and housing and more efficient performance.

The major disadvantages of ceramic in this application is the low fracture toughness and the lower Weibull

Modulus. A low Weibull modulus means that the strength data are more widely scattered. Therefore, the

designer is faced with a very brittle material with more poorly defined strength.

An additional problem for the designer is thermal stress at the attachment of the low coefficient of

expansion ceramic to the high coefficient of expansion metal shaft. Finally, due to low volume production

and difficult manufacturing, the cost of ceramic parts remains relatively high.

So even though bog has mentioned the wheel cooling quicker it's close but not quite right. It's the shaft expanding too much causing the increased hoop stresses and failure of the adhesive bond. Some more to explain the lottery of why some turbos fail without warning and some last forever....

Strength

Strength of ceramics is very dependent upon the flaw distribution in the materials. These "flaws" can be of

a microscopic nature and may not be flaws from a normal perspective. For example, the strength of glass

fibers is the highest immediately after manufacture, and simply handling them with clean hands can cause

sufficient surface damage to reduce strength by 30%. Because small flaws can have a very large effect,

the strength data of ceramics tends to be widely scattered.

The most practical way of dealing with widely scattered data is the use of statistics. In the case of ceramic

strength data, the standard statistical model is the Weibull distribution. A Weibull parameter (Weibull

slope, Shape parameter, Weibull Modulus) is often stated when describing the strength of a ceramic. The

meaning and use of this parameter is discussed in Section 2.

Another result of flaw sensitivity is that ceramics are much stronger in compression than tension (it is hard

to open a crack in compression). Testing of ceramics is often done in bending and the failure stress in

bending is often called the Modulus of Rupture, MOR.

And a temp vs strength table to compare the materials used....

post-6392-1151027404.jpg

An overall useful conversation. I still subscribe to overspeeding being a common root cause and will have to come up with some detail to support it, but admit outright temps are resolving as the critical factor so well done Cubes on a well thought through analysis, making me go and do some reading.

  • 1 year later...

Im sure i read they used ceramic because it handled the heat better and as mentioned is lighter. Still i guess 15-20 years of use is pretty good. Ive had 2 come apart on stock boost.

BTW: while reading my post take into account i didnt realise there was more than 1 page already on the topic lol..

Edited by Godzilla32
Well thats not really the point. EGT gauges are very useful and underutilised I believe. Then again I don't have one either lol.

i totally agree with what your saying ive got a EGT gauge and im currently running 15psi all day every day on my rb20det and its been almost 3 months and hasnt missed a beat....when it was being tuned we went off the pyrometer to see as to whether it was running rich or lean, more importantly exhaust temps and so yes i definately recommend one for longetivity of turbo.

Edited by allthewaytotheskyline
  • 1 month later...
Ceramic stockers are not your friend...as you know.

anyone have any knowlege of the ceramic turbines used in the apexi RX6 & AX53b70 turbos?

i assume they are of a far better design/composition, being fairly recent compared to the rb stockers?

thanks

Hi all, I have read thru this entire thread and it has some excellent content. Excellent work guys and thorough research. From the above I too have developed a question and that is:

"How do 1995 R33 GTR stocko's compare?"

They are a smaller turbine and hence should, as stated, cope with slightly higher (raised) rpm's than say, a GTST turbine of the same year.

I currently run a 3 inch system, although only from the CAT back (with hi-flow 3" cat). I have also taken out the restrictor after extensive discussions on here saying that it's OK to do so. A combination of the higher flowing exhaust and removal of restrictor have raised the boost up to around 13.5 to 14 pounds.

I always let engine warm up and warm down (with turbo timer) as I'm aware that it does a world of good for engine and turbos. So, in other words I'm giving the turbos time to cool down and contract SLOWLY which should somewhat make life easier on them.

However, what does concern me is track days. I've had one on stock boost, but my next one will be with the higher boost level. Will the smaller GTR stockies put up with extended thrashings? The track is Queensland Raceway, so for those who know it has the front long straight while the rest of it is a series of small squirts from corner to corner where your brakes and tires experience more wear than anything else haha!

Any advice would be much appreciated guys - thanks!!

Tom

Hi all, I have read thru this entire thread and it has some excellent content. Excellent work guys and thorough research. From the above I too have developed a question and that is:

"How do 1995 R33 GTR stocko's compare?"

They are a smaller turbine and hence should, as stated, cope with slightly higher (raised) rpm's than say, a GTST turbine of the same year.

I currently run a 3 inch system, although only from the CAT back (with hi-flow 3" cat). I have also taken out the restrictor after extensive discussions on here saying that it's OK to do so. A combination of the higher flowing exhaust and removal of restrictor have raised the boost up to around 13.5 to 14 pounds.

I always let engine warm up and warm down (with turbo timer) as I'm aware that it does a world of good for engine and turbos. So, in other words I'm giving the turbos time to cool down and contract SLOWLY which should somewhat make life easier on them.

However, what does concern me is track days. I've had one on stock boost, but my next one will be with the higher boost level. Will the smaller GTR stockies put up with extended thrashings? The track is Queensland Raceway, so for those who know it has the front long straight while the rest of it is a series of small squirts from corner to corner where your brakes and tires experience more wear than anything else haha!

Any advice would be much appreciated guys - thanks!!

Tom

Yeah second that, i Also am planning on taking mine to QR shortly. Should I be ok to run 1bar? I know 34 turbo's still have ceramic wheels, are they less prone to throw a wheel at all??

i have popped a wheel on my old gtr, after a quater mile run, on the way back it decided t pop, not whilst i was into it....

so who's theory is correct

Damage was possibly done on the run, then worked loose there after

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • 90lb/min @ 20psi is wonderful, not so much of a problem with the G35-1050's compressor efficiency (aside from how bad they roll back at higher pressure ratios).  The issue is more to do with the turbine's flow, which is why I'm not sold on going an even higher flowing compressor with the same turbine.  I'd say go back over Motive DVD's testing of the G35 1050 and Hawkins's comments regarding exhaust back pressure issues with it, I'd need to go back but I have in my head he went to the biggest hotside and ended up sacrificing a lot of spool (so it ended up behaving like a bigger turbo) and still had EMAP issues.  I've heard various other experiences along the lines of that. At this stage at least I rate all I've seen about Xonas (for transparency I've not used one directly, but I have spoke plenty with people who have) to have low exhaust restriction for the response they offer for any given setup - basically they allow the engine to breathe, which is good for the engine and makes making power a lot easier.  You arguably don't have to even push quite the same amount of airflow through an engine to make the same power if you don't have the bum plugged up with exhaust gas struggling to escape the engine due to an underflowing turbine.   In terms of reliability, to be fair I've had great luck with Garrett turbos as well - my GT3076R lasted forever, then I sold it and the next owner had no issues, then that car got sold and it was still going strong last I ever heard about it.  The trick is with the old GT-series turbos the compressors etc were no way near as efficient as what we have these days, it was almost hard to push them into severe overspeed situations without having a boost leak or something - and that is what often starts the failure situation.    In terms of your G35 I'm pretty sure you're running yours within sensible limits, something people with Xonas and Precision turbos aren't often so inclined to do.  The "compressor maps" are "Joe blogs ran 45psi through his 6466 so I can do the same" and built their setup to send it to the moon.  I've seen EMAP and compressor speed data where people have actually set that stuff up on Precisions and Xonas which have been run hard and the comp speed numbers are very very exciting at times - like I've seen 76mm Precisions run at rpm that you ideally shouldn't run a G35 1050 lol.   I know people who have run G-series Garretts hard and hard a failure, then replaced them with Pulsar turbos as a cheap "get it going" stop gap with the intent of doing a proper upgrade when THAT fails... and are still running the same thing.   Like anything, ymmv and it's not always to do with the quality or trustworthiness of said product. I've been provided with a bunch of compressor maps for Turbosmart turbos and will update my list based off that, they could prove to interesting reading and an interesting alternative as well.
    • Just cage it, call it a race car, and then fall in love with the chirp chirps through pit area!   Also, this is coming from someone with a completely locked diff...
    • I still have an old R32R left over from when they were a thing in the early 2000's. It was, for its time, done about right. But its time was 20 years ago.  I did try and update it a while back but it was cruelled by a (recommended) muppet of a tuna who couldnt tell his MAP from his TPS. The original spec was: Power FC, 700cc Sards, Nismo pump, 2860-5's, cams (Basically Poncam A's), Z32 AFM's and a half sorted oiling system. Thereabouts 430rwhp irrespective of what was done. So, yeah, very 1990's. I eventually got sick of it not being very refined and bought a Link G4 PNP with some 1000cc Bosch injectors. This was tuned badly and I put the car in the shed for a few years whilst I sulked and went and did other things. Ive come around to the idea of getting it going again so it has a new gearbox installed and some other minor things in the planning. So my questions are, variously (In the context of keeping the Link) What other sensors should I be running eg It has no wideband on it at the moment, nor fuel pressure. $? Is it worth chucking the old ignition system (ignitors etc) for new ignition coils? $2k? Cam/crank angle sensors? Can keep the aircon? $? Anything else? Sorry to launch another what should I do with my car thread but, you know, what should I do with my car? Random photo for historical context.
    • If you think that's harsh, go experience a KAAZ 🥲 Thoughts and prayers for Dose. I had mine modified by a diff shop to make it less brutal, no idea what they did but it's not as brutal as before. The Asian in me was being tight before and went KAAZ instead of a Nismo, lesson learned.
    • From what I understand, the normal Nismo diff is a bit harsh, and the Pro is the one that behaves more nicely, and you only pay Nismo tax twice to get it.
×
×
  • Create New...