Jump to content
SAU Community

Recommended Posts

  • Replies 64
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

I've got a rb20det turbo laying around but not willing to waste it on this experiment, as I don't feel ceramic turbines fail from wheel speed alone.

thats your perogative mate.

i know for a fact that the egt is the cause and all i was doing was offerring a chance to prove it to you all

I have to agree on the EGT. It should be a heads up guage for track work.

I haven't had time to respond but have been doing some research. Some SAE papers have indicated EGT's as a primary cause of failure of ceramic turbine wheels, because the adhesive is not up to the high temps or through a delta in the rate of thermal expansion. I'm still attempting to source a 1989 SAE paper on Garretts problems with ceramic turbines as that would have direct relevance.

An extract from one..

While this performance advantage [low spool times] is the major factor in the consideration of ceramics for the rotors, the

resistance of silicon nitride to the high temperature exhaust is also. Additionally, a lower coefficient of

expansion can mean a smaller air gap between rotor and housing and more efficient performance.

The major disadvantages of ceramic in this application is the low fracture toughness and the lower Weibull

Modulus. A low Weibull modulus means that the strength data are more widely scattered. Therefore, the

designer is faced with a very brittle material with more poorly defined strength.

An additional problem for the designer is thermal stress at the attachment of the low coefficient of

expansion ceramic to the high coefficient of expansion metal shaft. Finally, due to low volume production

and difficult manufacturing, the cost of ceramic parts remains relatively high.

So even though bog has mentioned the wheel cooling quicker it's close but not quite right. It's the shaft expanding too much causing the increased hoop stresses and failure of the adhesive bond. Some more to explain the lottery of why some turbos fail without warning and some last forever....

Strength

Strength of ceramics is very dependent upon the flaw distribution in the materials. These "flaws" can be of

a microscopic nature and may not be flaws from a normal perspective. For example, the strength of glass

fibers is the highest immediately after manufacture, and simply handling them with clean hands can cause

sufficient surface damage to reduce strength by 30%. Because small flaws can have a very large effect,

the strength data of ceramics tends to be widely scattered.

The most practical way of dealing with widely scattered data is the use of statistics. In the case of ceramic

strength data, the standard statistical model is the Weibull distribution. A Weibull parameter (Weibull

slope, Shape parameter, Weibull Modulus) is often stated when describing the strength of a ceramic. The

meaning and use of this parameter is discussed in Section 2.

Another result of flaw sensitivity is that ceramics are much stronger in compression than tension (it is hard

to open a crack in compression). Testing of ceramics is often done in bending and the failure stress in

bending is often called the Modulus of Rupture, MOR.

And a temp vs strength table to compare the materials used....

post-6392-1151027404.jpg

An overall useful conversation. I still subscribe to overspeeding being a common root cause and will have to come up with some detail to support it, but admit outright temps are resolving as the critical factor so well done Cubes on a well thought through analysis, making me go and do some reading.

  • 1 year later...

Im sure i read they used ceramic because it handled the heat better and as mentioned is lighter. Still i guess 15-20 years of use is pretty good. Ive had 2 come apart on stock boost.

BTW: while reading my post take into account i didnt realise there was more than 1 page already on the topic lol..

Edited by Godzilla32
Well thats not really the point. EGT gauges are very useful and underutilised I believe. Then again I don't have one either lol.

i totally agree with what your saying ive got a EGT gauge and im currently running 15psi all day every day on my rb20det and its been almost 3 months and hasnt missed a beat....when it was being tuned we went off the pyrometer to see as to whether it was running rich or lean, more importantly exhaust temps and so yes i definately recommend one for longetivity of turbo.

Edited by allthewaytotheskyline
  • 1 month later...
Ceramic stockers are not your friend...as you know.

anyone have any knowlege of the ceramic turbines used in the apexi RX6 & AX53b70 turbos?

i assume they are of a far better design/composition, being fairly recent compared to the rb stockers?

thanks

Hi all, I have read thru this entire thread and it has some excellent content. Excellent work guys and thorough research. From the above I too have developed a question and that is:

"How do 1995 R33 GTR stocko's compare?"

They are a smaller turbine and hence should, as stated, cope with slightly higher (raised) rpm's than say, a GTST turbine of the same year.

I currently run a 3 inch system, although only from the CAT back (with hi-flow 3" cat). I have also taken out the restrictor after extensive discussions on here saying that it's OK to do so. A combination of the higher flowing exhaust and removal of restrictor have raised the boost up to around 13.5 to 14 pounds.

I always let engine warm up and warm down (with turbo timer) as I'm aware that it does a world of good for engine and turbos. So, in other words I'm giving the turbos time to cool down and contract SLOWLY which should somewhat make life easier on them.

However, what does concern me is track days. I've had one on stock boost, but my next one will be with the higher boost level. Will the smaller GTR stockies put up with extended thrashings? The track is Queensland Raceway, so for those who know it has the front long straight while the rest of it is a series of small squirts from corner to corner where your brakes and tires experience more wear than anything else haha!

Any advice would be much appreciated guys - thanks!!

Tom

Hi all, I have read thru this entire thread and it has some excellent content. Excellent work guys and thorough research. From the above I too have developed a question and that is:

"How do 1995 R33 GTR stocko's compare?"

They are a smaller turbine and hence should, as stated, cope with slightly higher (raised) rpm's than say, a GTST turbine of the same year.

I currently run a 3 inch system, although only from the CAT back (with hi-flow 3" cat). I have also taken out the restrictor after extensive discussions on here saying that it's OK to do so. A combination of the higher flowing exhaust and removal of restrictor have raised the boost up to around 13.5 to 14 pounds.

I always let engine warm up and warm down (with turbo timer) as I'm aware that it does a world of good for engine and turbos. So, in other words I'm giving the turbos time to cool down and contract SLOWLY which should somewhat make life easier on them.

However, what does concern me is track days. I've had one on stock boost, but my next one will be with the higher boost level. Will the smaller GTR stockies put up with extended thrashings? The track is Queensland Raceway, so for those who know it has the front long straight while the rest of it is a series of small squirts from corner to corner where your brakes and tires experience more wear than anything else haha!

Any advice would be much appreciated guys - thanks!!

Tom

Yeah second that, i Also am planning on taking mine to QR shortly. Should I be ok to run 1bar? I know 34 turbo's still have ceramic wheels, are they less prone to throw a wheel at all??

i have popped a wheel on my old gtr, after a quater mile run, on the way back it decided t pop, not whilst i was into it....

so who's theory is correct

Damage was possibly done on the run, then worked loose there after

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Apologies for the long post, but needed somewhere to lay out the entire timeline of events and actions taken:   I've got an 89 GTR with a R34 RB in it. It's been running great all year, driven probably 500KM in the last month. It's not my daily driver, just a weekend fun car.    Build info: R34 RB26 - HKS 2.7 stroker kit, HKS adjustable cam gears, HKS turbo upgrades, Trust intercooler, R34 factory DENSO 440cc injectors, JUN chipped/tuned R32 ECU. All of this work was performed in Japan back in 2019.    Thursday 10/2/25 - It's a nice day and decided I'll drive it to work, I start it up in the garage and I notice it took a few extra cranks and sounded a bit funny. I figure maybe it was just because it was a pretty chilly morning. I pull it out into the driveway to warm up a bit before leaving. As I leave the driveway, it feels very off and sounds like a misfire. I pull it back in the garage to deal with after work and take the daily to work. I was able to diagnose it as a cylinder 5 misfire with the old spark plug test (unplugging each plug until a sound change with the engine running). I take off the whole ignition system, ignitor, plugs, spark. *Important note, it is still on the R32 ignition system with the separate ignitor system. I test each system with a multi-meter and nothing presents as a smoking gun. I put it all back together and it starts up no issue. I go ahead and order the PRP R35 ignition conversion kit. It should arrive today (10/13/25)   Friday 10/3/25 - Another nice day, car starts up great and drives great all day. Very pleased that everything seems to be OK   Sunday 10/5/25 - Decided I'll take it to play some golf, load up and drive to the course about 25 minutes away. Drives wonderful the whole way there, I pull in the parking lot and the engine completely comes to a stop. I do not recall if it sputtered at all, but just remember all of the sudden the engine was off. I roll it into a parking spot, try to crank it back on and nothing.  It'll crank and crank and not even try to start. End up getting it towed back to my house and push it up into the garage.    Items I have checked: Fuel in the tank Fuel Pump relay Fuel pump fuse  Spark Plugs & gap Coil packs Ignitor    I know the cylinders are getting fuel as the plugs smell like fuel after a start attempt. I tried spraying starter fluid into the manifold and cranking and not even a sputter.    I decided to do the live CAS test (removing the the CAS, ignition on and spinning the CAS stalk to see if the injectors pulse and spark is active). All of the injectors were pulsing and I have spark at the plug. The half-moon end of the CAS did seem very loose, I'm not sure how much play is supposed to be there, but it was more than I expected. There was no in/out play of the shaft, just the tip end that is pinned on had quite a bit of play.    CAS Play video   When I put the CAS back in, I stupidly did not re-time the engine. I know I need to do that tonight, however, I do not think it will start given it seemingly was not the issue. My plan is to do the PRP R35 coil kit and retime the engine at the same time.    I plan on ordering the Haltech Nexus Plug-in ECU once they are available again, but ideally would like to get this sorted before firing the parts cannon at it and potentially adding more variables.    Anything glaring that I am missing here, I'm a bit at a loss?          
    • Get it on a dyno. Get something logging Consult. Run it up and find out what is causing it.
    • Looking for a plenum for rb25 de+t neo  Not looking to push much power maybe 300kw at the wheels, is there much difference in flow for Freddy “Greddy style” compared to original Greddy or options like Proflow or Otaku garage?    I won’t be porting the de Neo head for now as I think it’ll be fine 280-300rwkw but appreciate the help and any experiences anyone has between them and any advice. Thanks  Looking at this plenum for now below 
    • engine wise almost no mods: stock ecu Greddy front mount intercooler Greddy forward facing intake w R33 TB stock fuel system, stock injectors, rail etc. Kakimoto racing hyper 3 inch exhaust system Apexi intake filter New NGK –R BCPRES (.8 gap) plugs  
    • Nice one @Pac - looks like a fair few 1600's there! 
×
×
  • Create New...