Jump to content
SAU Community

Recommended Posts

For those who are a little unsure. I found this searching google...

source: http://www.btc-bci.com

Beginning of Extract:

Most people hear these words but rarely have the opportunity to understand what they mean and do.

TOE

This is the amount that the wheels are pointed in or out EG often called "total toe in or out". On rear independant suspension cars this is also adjustable, Subaru, Daihatsu etc. NOT live axle cars though. Fords, Holdens etc. Often measured in mm this little change makes huge differences in handling. As a car moves forward the suspension often moves back reducing toe in, so cars are often set with 1 - 3 mm toe IN. If the car has toe out it often tends to wander on the road more.

On all our rally cars we run about 1 - 2 mm on the front and BACK.

Rear is less important as it tends to be less likely to be affected by knocks, pot holes and kerbs. BUT it is important to be correct

CAMBER

Think of the angle of most roads, look along it and it slopes to the side to make the water drain or is banked on fast freeway corners. This is camber, the angle your wheel sits in relation to vertical when pointed ahead and you look straight at the car from front or rear. Measured in degrees, most common road cars have 0 - .5 degree std. some more. Too much NEGATIVE camber will wear out tyres on the inside. POSITIVE wears out the outside. Look at really old cars they often have POSITIVE camber. (I do not know why).

The correct amount varies depending on CASTOR, (see follows) and how you drive your car. If you have little castor and you love driving fast through corners then you need more NEGATIVE camber, if you do heaps of freeway driving then less is better.

THE REASON? When you turn a corner the outside tyre tends to roll under the rim, causing it to wear on its outer edge. By laying it on its side you reduce this effect. Too much and it will wear on the inside, too little and wear on the outside.

NOTE this is often used to stop wide tyres rubbing on wheel arches or suspension points, this case tyres wear is not a focus! REMEMBER too much neg camber and you will lose traction in straight ahead driving as the tyre is not flat on the road.

CASTOR

This is the best of both! BUT is often not adjustable on modern cars.

Camber stays the same if the pivot (vertically) of the car suspension is zero. EG if you turn the wheel about its axis (steer not spin) it stays the same. BUT if the axis is at an angle (for and aft) then the more you steer the car, the more camber you get!

Its hard to relate, but if you imagine looking at the LHS of the cars wheel, with front to your left, if you grabbed the top of the axis and moved it back (to horizontal) with the wheel position staying still then this is castor, then imagine, if you turned the wheel to the right 90 degrees then the wheel will lay flat, this is obviously an extreme example but best explained.

SO, the more castor the more the wheel will increase negative camber the more you turn the wheel. BUT too much castor and the car will want to wander as it has less tendency to want to point straight ahead.

:End Extract

46n2 :burnout:

Link to comment
https://www.sau.com.au/forums/topic/15046-camber-toe-castor-the-difference/
Share on other sites

46n2, whiteline also have alot of suspension info, including castor, toe and camber with nice piccies.

RaduiM - dude I hope that is(EDIT)positive castor. You can adjust the castor on a skyline, just need bushes or and adjustable rod to replace the stocky.:) I had my bushes done, now got 7.5deg pos castor on the front:D

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Hi guys, has anyone either purchased or built themselves a rotisserie for their car before? I can only just justify the need for one hence why I should just make one but at the same time, if I make one I can kiss another 4 weeks of potentially productive car working time goodbye because I'm building a bloody rotisserie....  I mainly want it for the application of the body deadener.  Cleaning the old stuff off, priming and then colour over the deadener doesn't worry me, it's just the application using the Schutz Gun that I feel would achieve a significantly better finish painting it side on and keeping the Schutz Gun upright.  I don't think they would work well on the side let alone almost upside down for some areas.  If the product I use (Terosun, etc) could work through a HVLP ok then it might be ok to apply without the rotisserie.   I can get one of these style ones for about $1200 which is pretty good value-     I reckon if I made one it would cost around $500 but it's more the time that it would take is more of a killer than the cost.  They look to hold their value pretty well second hand so I could always sell it after using it and realistically only lose $200-$300 at worst.  Or keep it and buy another project when this one finally sees the light of day... Anyone selling one...? Cheers!  
    • While it is a very nice idea to put card style AFMs into the charge pipe (post intercooler, obviously), the position of the AFM and the recirc valve relative to each other starts to become something that you really have to consider. The situation: The stock AFM is located upstream the turbo, and the recirc valve return is located between the AFM and the turbo inlet, aimed at the turbo inlet, so that it flows away from and not through the AFM. Thus, once metered air is not metered again, neither flowing forwards, or backwards, when vented out of the charge pipe. When you put the AFM between the turbo outlet and the TB, there is a volume of pressurised charge pipe upstream of the AFM and there is a volume of pressurised pipe downstream of the AFM. When the recirc valve opens and vents the charge pipe, air is going to flow from both ends of the charge pipe towards the recirc valve. If the recirc valve is in the stock location, then the section between it and the TB doesn't really matter here - you're not going to try to put the AFM in that piece of pipe. But the AFM will likely be somewhere between the intercooler and the recirc valve, So the entire charge pipe volume from that position (upstream of the AFM, back through the intercooler, to the turbo outlet) is going to flow through the AFM, get registered as combustion air, cause the ECU to fuel for it, but get dumped out of the recirc valve and you will end up with a typical BOV related rich spike. So ideally you want to put the AFM as close to the TB as possible (so, just upstream of the crossover pipe, assuming that the stock crossover is still in use, or, just before the TB if an FFP is being used) and locate the recirc valve at the turbo outlet. Recirc valve at the turbo outlet is the new normal for things like EFRs anyway. In the even of a recirc valve opening dumping all the air in the charge pipe, pretty much all of it is going to go backwards, from the TB to the recirc valve near the turbo outlet. But only a small portion of it (that between the TB and the AFM) will pass through the AFM, and it will pass through going backwards. The card style AFMs are somewhat more immune to reading flow that passes through them in reverse than older AFMs are, so you should absolutely minimise the rich pulse behaviour associated with the unavoidable outcome of having both a recirc valve and an AFM in the charge pipe.
    • Yep, in my case as soon as I started hearing weird noises I backed off the tension until it sounded normal again. Delicate balance between enough tension to avoid that cold start slip and too much damaging things.
    • I'm almost at a point where I feel like changing the alternator. Need to check the stuff you mentioned first though.
×
×
  • Create New...