Jump to content
SAU Community

Recommended Posts

They are as relevant as a 7000rpm limit on the std crank.

100% agree on the point you're making, but I'm trying to make a different one :)

my standard rb30 crank goes to 9000rpm no probs so yeah I really do understand what you're saying :(

Nice to see the 3.4lt project is coming along still.

Im just guessing, but if the compression heights are kept to a lowish 28mm and the custom rod length is about 152mm to suit the RB30 block, the rod ratio works out to 1.6:1.

I've just run a few numbers on my engine calculator and for a street application with a degree of reliability 8000 rpm would be the absolute upper limit (including a missed gear shift). 8500 rpm would be pushing the limit of what the rod bolts and pistons will tolerate and 9000 RPM will break a conventional designed forged pistons as piston speeds exceed 46m/s.

Also at 9000 RPM the acceleration away from TDC/BDC is 54.5 m/s ^2. Numbers like that are only seen in all out drag engines. ie... engines built entirely from top shelf custom parts the likes of carillo/pauter with wmc5 bolts and special piston designs. Titanium rods would go a long way to improving high rpm reliability as the rotating mass and rod big end loads are considerably less due to less inertia during the acceleration/deceleration phases of the engines rotation.

post-26553-1261660079_thumb.jpg

Nice to see the 3.4lt project is coming along still.

Im just guessing, but if the compression heights are kept to a lowish 28mm and the custom rod length is about 152mm to suit the RB30 block, the rod ratio works out to 1.6:1.

I've just run a few numbers on my engine calculator and for a street application with a degree of reliability 8000 rpm would be the absolute upper limit (including a missed gear shift). 8500 rpm would be pushing the limit of what the rod bolts and pistons will tolerate and 9000 RPM will break a conventional designed forged pistons as piston speeds exceed 46m/s.

Also at 9000 RPM the acceleration away from TDC/BDC is 54.5 m/s ^2. Numbers like that are only seen in all out drag engines. ie... engines built entirely from top shelf custom parts the likes of carillo/pauter with wmc5 bolts and special piston designs. Titanium rods would go a long way to improving high rpm reliability as the rotating mass and rod big end loads are considerably less due to less inertia during the acceleration/deceleration phases of the engines rotation.

Do you feel like running the numbers for a std stroke rb30 for a comparison?

They are as relevant as a 7000rpm limit on the std crank.

Well rob @ rips revs his engines past 11500rpm and this is with the factory rb30 crank and making over 1400hp. Need i say anymore?

Well rob @ rips revs his engines past 11500rpm and this is with the factory rb30 crank and making over 1400hp. Need i say anymore?

yeah I think you've missed the point aswel mate

my standard rb30 crank goes to 9000rpm no probs so yeah I really do understand what you're saying :)

For a few dyno runs, with lazy driving for 10k-km's or are we talking a SOLID 30,000km's with the ass wringed out of it for streeter duties/drag days? :(

There is a... sizeable lets say... difference between the two.

BTW - i know the point you are making, not covered in the above i know :P

Sorry but Im not so good at making graphs. Ive got one other table that shows piston speeds and acceleration through 360 degrees crank rotation, and the comparison of the tomei to the HKS kit is really very little when comparing the two engine setups. Really the 119.5 rod was only made as an option to allow the use of a thicker crown piston that uses a conventional RB26 30mm compression height. Its well known that the 2.8 kits are safe for 10k so I didnt bother calculating the 8500rpm values.

Ive attached the rest of the table. You might recall the Racepace 2.9 spaced block engine that used a 84mm crank and SR20 rods as well.

At 9000 RPM the piston acceleration for a RB30 is 47.5m/s^2.

The most important thing to keep in mind is the whole point of having a stroker engine is that you dont have to rev the hell out of the engine to make reliable power. That extra 400+cc of capacity will do for the RB30 what the RB30's displacement does over the RB26, if that makes sense.

The beauty of the larger displacement AND the shorter rod ratio is that while the engine doesnt need to (and shouldnt) rev as much as another type of engine, the faster piston accelerations from BDC and TDC mean better cylinder filling making for a more torquie engine. The cylinder pulls into a vacuum faster on induction cycles than a higher ratio motor will, so the engine breathes more efficently.

I agree with Marko's comment that there is nothing wrong with the strength of an RB30 crank. Rob @ RIPS certainly has proven that time and time again. I do wonder what kind of rods and pistons are in his 11,500RPM engine though, im guessing aluminium/titanium and some very fancy pistons. The inertia loading of chromoly rods and pistons at that engine speed would be increadably high. Acceleration factor of an RB30 crankshaft at 11500 rpm is 77.5m/s^2. That is a 1/2 again as much as the RB30 at 9000 RPM.

post-26553-1261665231_thumb.jpg

Ash I think it's just not coloured correctly?

Yes thats it. I always was better at maths than I was at art, especially past 12am.

New table attached.

post-26553-1261700716_thumb.jpg

Edited by GTRNUR

My point was that this setup was never designed to be a big rever.

It was designed to ( compared to the equivalent setup in an normal stroke RB30 ) to make considerably more torque, bring boost on earlier and make same power with less boost and less revs.

So if it makes the same peak power as my current RB30/25 with less boost and less revs, and more torque and comes on boost earlier - Ill be happy.

If it revs to 7500 rpm then it realisticly should make more peak power than my current setup as that is what Im revving it to now, due to the increase in capacity.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Surely the merged entity will be called "Honda" given the relative company values. I've got to be honest, I don't understand how merging 2 companies that missed EVs (despite Nissan making the first mass produced one) will solve their problems
    • If you haven't bought the ECU yet, I would strongly consider buying a modern ECU. Yes it is very easy to setup and tune, however it is lacking many of the features of a modern ECU. The pro plug in is something like 10 or 12 years old now? Can't remember exactly but it is very dated now. In that time the Elite was released and now we have the Nexus platform.  I would strongly consider not buying the ECU that is 3 generations old now (especially as it isn't a cheap ECU!). 
    • Im happy for it as long as it means reanult gets the boot 
    • Sorry I should have been more clear with the previous post.  The block is a sanding block - picture something like this https://motorguard.com/product/motor-guard-bgr161-bgr16-1-rigid-psa-sanding-block-2-5-8-x-16/ The guide coat is the paint It's two separate things I was talking about, there is no "block guide coat". 
    • Maybe more accurately, you aren't just dulling the existing paint, you are giving the new paint something to 'grab on to'. By sanding the existing paint, you're creating a bunch of pores for the new paint to hook on to.  You can lay new paint over existing paint without sanding it, might last a year or two then sad times. The paint will peal/flake off in huge chunks. By sanding it, the new paint is able to hang onto it and won't flake off.  Depends on the primer you are using. When you buy your paint, as the paint supplier what grit of sand paper to use before you lay down the primer.  Use whatever you like as a guide coat. Pick a colour that really stands out in contrast to the paint. So say your sanding/painting a currently white car, using a black guide coat would work well. You very lightly lay the black guide coat down, then as you sand the car with the large block, all the high spots and low spots will stand out as the black paint is sanded off (or isn't sanded off).  When you buy your paint, hit up your supplier for recommendations for what paint to use for a guide coat if you're unsure what would work well with your setup. 
×
×
  • Create New...