Jump to content
SAU Community

Recommended Posts

I was trawling through ebay and found this: http://cgi.ebay.com.au/NEW-12-V8-RACE-EXTE...%3A1|240%3A1318

As im looking for an oil cooler i was trying to think how effective it would be and came up with this;

- the fins dont penetrate deep enough into the oil for it to be effective in transferring heat

- oil pressure on startup will take longer to generate depending on where it is located (the picture in there is showing it to be mounted up high).

looks like just another ebay cheapo item to me. What are your thoughts?

Link to comment
https://www.sau.com.au/forums/topic/258200-strange-ebay-oil-cooler-design/
Share on other sites

i think the normal tube/fin style coolers would be more efficient. the one you linked doesn't look like it would have the surface area contact to the cooling fins that a convertional oil cooler would. also i'd think the air flow through a tube/fin coller would be better at removing heat than a larger "solid" cooler would.

Yeah agree with you on looking cheap and possibly not doing a great job of cooling. Aluminium does transfer heat well, but it would really need to be mounted with fins running front to rear of the car to work the best. I'd stay clear of it.

I've actually seen something like that on a couple of race cars, looks like it works like a massive heatsink like on a PC. Would work better plumber in at the front of the car or somewhere it would get airflow I rekon.

My feeling is that these would not work very well at all when compared to more traditional oil coolers..These are the reasons why...

1. Although the oil is able to penetrate the cooling fins the main flow of oil would be through the core of the cooler as this is the path of least resistance. The oil penetrating the fins would stagnate in the fins as there is nothing to cause this oil to flow. So you would end up with most of the oil flowing through the centre of this thing and the cooled oil would remain in the fins.(just as if it was just a length of hose)..Oil has a much lower thermal conductivity than aluminium and therefore you could argue that the fins would be better off if they were solid.

2. The most efficient heat exchangers maximise the ratio of contact surface area vs fluid volume of the hot and the cool fluids..In this case the fluids are oil and air...The most inefficient cross section for doing this is circular...The most efficient is squat rectangular sections that are wide and short. This give the most surface contact between the two fluids. Just like traditional oil coolers...

3. Also for an air type cooler to be effective, free flowing air must flow over a large area to maximise the heat removed. With this design if you had air flowing at 90 degrees to the cooler, the fins themselves would trap air between them which once again would stagnate. At the back of the cooler (the side not facing the airflow) you would also get a low get a low pressure region. This would reduce the heat tranfer from the fins to the air.

So IMO these are worth every cent you pay for them...which is not much by the looks of it...They would be slightly better than no cooler at all but not worth the effort to fit one...

I wonder if it would work better if you mounted it longitudinal <--- is that right, rather than horizontal i.e with the opening at the front of car and the exit at the rear of car?? That would eliminate the airflow restriction but I agree traditional works for a reason so why do it differently if it's not as good

I wonder if it would work better if you mounted it longitudinal <--- is that right, rather than horizontal i.e with the opening at the front of car and the exit at the rear of car?? That would eliminate the airflow restriction but I agree traditional works for a reason so why do it differently if it's not as good

Changing the orientation so that the air travels along it fixes one shortcoming but creates another...What would happens is the air at ambient temperature would hit the front end of it and as it travels along the fins, the air would be heated...This happens in all coolers...the air traveling out is warmer than the air traveling in...this must happen for the cooler to be cooling...but as the air heats up less and less heat is transferred into it so it becomes less effective at removing heat..

Also the relatively small projected cross sectional area of the cooler that would be exposed to the airflow would be very limiting...If you consider the cooler functioning as follows it will become obvious...

The road speed air at ambient temperature flows over the cooler that is heated by the oil..heat is absorbed by the air as it is drawn out of the oil...Now if you consider the setup in 2D, and that the road speed air has the capacity to absorb only a certain amount of heat...It follows that as the projected area of the cooler increases, the ability of the cooler absorb heat increases directly proportional to its area...Eg If the diameter of this round cooler was say 50mm and it was compared to a standard cooler that was 100x100mm, the 100x100 would cool at least 4-5 times more...(yep couldn't be bothered working area of 50mm dia but you know what I mean)..

So this means that with coolers the projected area of the cooler is more important than the cooler depth. ..So no matter which way you orientate this cooler it wont work better than a conventional one because its projected area to the airflow is small...

hope this makes sense...

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Bit of an update to this one. Having some issues on the dyno that held us back (boost spiking) and I want to pass some info over you guys and see what you think is wrong with my setup. The current readout on this dyno is 462rwkw on a low reading dyno so keep in mind it is a real world 500rwkw setup on a hub dyno. Don't read into the power figure too much as a sign of the issue. The short and curly of it is: 2.8 Litre Racepace build RB25 NEO N/A Head with VCT (internally standard however ) Borgwarner EFR 8474  Turbosmart 50mm Straight Gate + Mac valve 6Boost Manifold 4" dump to full 4" exhaust (nil restrictions) Wastegate plumbed back in and all angles in the exhaust system are acceptable and not too sharp. GFB SV52 BOV in cooler piping  Turbosmart BOV in EFR Housing   The issue we are having is it comes onto full boost for example at 4000rpm and spikes to 24/25psi, before dropping down to 17psi before slowly rising back up to the target boost of 23psi. It was extremely uncontrollable and the tuner actually had to ramp in boost progrssively with each 1000rpm on each boost setting we selected to try and reduce the amount of spiking. Sometimes we would see a drop of 10psi from the peak at the beginning of the run, to the low, until it took the next 500-1000rpm to stabilise back up to the target boost. The tuner is pretty confident that the straight gate is just a poorly designed product and leaks too much boost upon cracking the gate open and theres no way to fix it other than going to a poppet valve. He's also confient theres no ignition breakdown or floating valves. The fueling is extremely stable as well. Turbo speed is somewhere around the 109,000rpm area. The spanner in the works for me is that prior to this Borgwarner and StraightGate, the car was tuned on -5 twins at a diferent tuner, and he also had issues controlling the boost with it spiking around the same rpm range, so to me this sounds like the same issue and it can't be anything on the turbo side as this was all changed and I think the behaviour is extremely similar, if not the same. We also removed the mac valve and did a run on wastegate pressure and it still spiked and had the same behaviour. My thoughts on possibilities are: Boost Leak VCT Cam Gear isn't reliably activating consistently - (On this however, we did a run with the VCT disabled and the boost still spiked) Turbosmart BOV is not handling the boost? However this seems unlikely to not be able to handle 20psi. I have a couple of logs that I can't make sense of if anybody knows how to read them and can obtain further logs of other parameters if they are not enough, happy to pay for anyones time. The dyno readout with the power figure is the most recent last week. The other picture is from two weeks prior to that where we couldn't break 400kw (we removed the cat), however the issue of the boost control persisted. @Lithium @Piggaz @burn4005 @GTSBoy @discopotato03 I've tagged those that were quite active in recent pages here, no disrespect to those that know turbos well but I missed tagging. Cheers 
    • I recently purchased a 2018 Infiniti Q60, which has an SD card navigation map. I can see my system has options for real time traffic updates etc, and am wondering if there is something I can purchase to get this working? I can see there are at least updated maps for USA and Canada, but nothing for Australia. Surely Infiniti took changing road systems and city expansions into account when they decided to use an inbuilt navigation over Android Auto/Apple Car Play, or are we doomed to drive on streets that don't exist in the navigation system if you drive to a new area?
    • Luckily I didn't put in etch primer as I just found out it's not compatible with my body filler lol. Also just need to sand the panel anywhere between 150-400 grit so I'm in the clear there. It does say to not apply to soft old paint, I assume that means paint that is flaking, peeling,etc
    • @dbm7 and @GTSBoy thank you both very much! will give that a shot!
×
×
  • Create New...