Jump to content
SAU Community

Recommended Posts

but what if the skyline had, like, sic cat back zorst and some HGE boost. Wouldn't it win then?

I heard the F1 cars don't have much torque, so maybe if they raced on the uphill :confused:

Originally posted by Silver-Arrowz

the ferrari wins cause it's got more stickers. More stickers = more HP.

Yeah, you're right about that, you should see how many stickers are going on for Dutton rally.....we are sure to kick everyone's arse

Originally posted by Rezz

This thread should be titled "Ferrari F1 car opens up a can 'o whoop ass on pit crew member"...:P

:bahaha: yeah, I would have except there wouldn't be a "vs" in the title :)

Do you reckon that crew member made a mistake at the last pitstop and it was payback time?

bit of insite into f1

An F1 car is made up of 80,000 components, if it were assembled 99.9% correctly, it would still start the race with 80 things wrong!

Formula 1 cars have over a kilometre of cable, linked to about 100 sensors and actuators which monitor and control many parts of the car.

An F1 car can go from 0 to 160 kph and back to 0 in 4 seconds.

At 550kg a F1 car is less than half the weight of a Mini.

In an F1 engine revving at 18000 rpm, the piston will travel up and down 300 times a second.

Maximum piston acceleration is approximately 7000G (humans pass out at 7-8G).

Drivers haven't had to resort to pressure suits like fighter pilots because they only experience high G's for very short periods of time.

If a connecting rod let go of its piston at maximum engine speed, the piston would have enough energy to travel vertically over 100 m.

If a water hose were to blow off, the complete cooling system would empty in just over a second.

Gear cogs or ratios are used only for one race, and are replaced regularly to prevent failure, as they are subjected to very high degrees of stress.

The fit in the ****pit is so tight that the steering wheel must be removed for the driver to get in or out of the car. A small latch behind the wheel releases it from the column. Levers or paddles for changing gear are located on the back of the wheel. So no gearstick! The clutch levers are also on the steering wheel, located below the gear paddles.

To give you an idea of just how important aerodynamic design and added downforce can be, small planes can take off at slower speeds than race cars travel on the track.

Without aerodynamic downforce, high-performance racing cars have sufficient power to produce wheel spin and loss of control at 160 kph. They usually race at over 300 kph.

The amount of aerodynamic downforce produced by the front and rear wings and the car underbody is amazing. Once the car is travelling over 160 kph, an F1 car can generate enough downforce to equal it's own weight. That means it could actually hold itself to the ceiling of a tunnel and drive upside down! In a street course race, the downforce provides enough suction to lift manhole covers. Before the race all of the manhole covers on the streets have to be welded down to prevent this from happening!

If you've ever changed a tyre, you know that you have to jack the car up off the ground to be able to replace the wheel. And it takes ages. F1 cars have integrated pneumatic jacks in the chassis (rather than the manual jacks normal cars have) - two in the front and one in the rear. By connecting a pressurised nitrogen hose to a port located behind the driver, the pit crew can jack the whole car up in less than a second when the car stops in the pit.

The refuelers used in F1 can supply 12 litres of fuel per second. This means it would take just 4 seconds to fill the tank of an average 50 litre family car.

Top F1 pit crews can refuel and change tyres in around 3 seconds.

Race car tyres don't have air in them like normal car tyres. Most racing tyres have nitrogen in the tyres because nitrogen has a more consistent pressure compared to normal air. Air typically contains varying amounts of water vapour in it, which affects its expansion and contraction as a function of temperature, making the tyre pressure unpredictable.

During the race the tyres lose weight! Each tyre loses about 0.5 kg in weight due to wear.

At ~ 350 mm wide, F1 tyres are much wider than normal tyres (~185 mm wide).

Normal tyres last 60 000 - 100 000 km. Racing tyres are designed to last 90 - 120 km.

A dry-weather F1 tyre reaches peak operating performance (best grip) when tread temperature is between 90°C and 120°C. At top speed, F1 tyres rotate 50 times a second, or 3000 rpm

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • I mean I can be OCD'y but this is really over the top. At that point why not just run a full wideband fuel controller? Especially if you run 3 widebands. The system works pretty well, which is trimming low load stuff to be within a few percent of the base map. Pre-engine _change_ the base map was only 1-2% off, depending on ambient temp, elevation, etc. Under load the LS is really very straightforward to tune, enough that a wideband closed loop would be overkill. If I really cared (and I hope I don't) I can always just go back to the MAF system the car actually came with. Which does all those nice calculations for me (temp, altitude, etc), now that you can buy 102mm MAF's that do not cause restrictions.
    • Good afternoon Team , just a quick update on performance mods  Current Mods list (Installed) HKS - Power Editor (Came with the car) looks to be some kind of boost controller RV37 Skyline 400R (SKYLINE) | FUJITSUBO  - Cat Back  RV37 Skyline 400R (SKYLINE) | FUJITSUBO  - Front Pipe AMS  - INFINITI Q50/Q60 RED ALPHA COLD AIR INTAKE KIT AMS  - Performance Heat Exchanger Intercooler Not Yet AMS Alpha Performance Full Race Down Pipes  - to be installed in May 
    • I'd be installing 2x widebands and using the NB simulation outputs to the ECU.
    • Nah, it's different across different engines and as the years went on. R32 era RB20, and hence also RB26, the TPS SWITCH is the idle command. The variable resistor is only for the TCU, as you say. On R33 era RB25 and onwards (but probably not RB26, as they still used the same basic ECU from the R32 era), the idle command is a voltage output of close to 0.45V from the variable resistor.
    • It's actually one of the worst bits of Nissan nomenclature (also compounded by wiring diagrams when the TCU is incorporated in ECU, or, ECU has a passthru to a standalone TCU).... the gripe ~ they call it the TPS, but with an A/T it's actually a combined unit ...TPS (throttle position switch) + TPS (throttle position sensor).... ..by the looks of it (and considering car is A/T) you have this unit... https://www.amayama.com/en/part/nissan/2262002u11 The connector on the flying lead coming out of the unit, is the TPS (throttle position sensor) ...only the TCU reads this. The connector on the unit body, is the TPS (throttle position switch) ...ECU reads this. It has 3 possible values -- throttle closed (idle control contact), open (both contacts open, ECU controls engine...'run' mode), and WOT (full throttle contact closed, ECU changes mapping). When the throttle is closed (idle control contact), this activates what the patent describes as the 'anti stall system' ~ this has the ECU keep the engine at idling speed, regardless of additional load/variances (alternator load mostly, along with engine temp), and drives the IACV solenoid with PWM signal to adjust the idle air admittance to do this. This is actually a specific ECCS software mode, that only gets utilized when the idle control contact is closed. When you rotate the TPS unit as shown, you're opening the idle control contact, which puts ECCS into 'run' mode (no idle control), which obviously is a non-sequitur without the engine started/running ; if the buzzing is coming from the IACV solenoid, then likely ECCS is freaking out, and trying to raise engine rpm 'any way it can'...so it's likely pulling the valve wide open....this is prolly what's going on there. The signal from the connector on the flying lead coming out of the unit (for the TCU), should be around 0.4volts with the throttle closed (idle position) ~ although this does effect low throttle shift points if set wrong, the primary purpose here is to tell TCU engine is at idle (no throttle demand), and in response lower the A/T line pressure ... this is often described as how much 'creep' you get with shifter in D at idle. The way the TPS unit is setup (physically), ensures the idle control contact closes with a high margin on the TPSensor signal wire, so you can rotate the unit on the adjustment slots, to achieve 0.4v whilst knowing the idle control contact is definitely closed. The IACV solenoid is powered by battery voltage via a fuse, and ground switched (PWM) by the ECU. When I check them, I typically remove the harness plug, feed the solenoid battery voltage and switch it to ground via a 5watt bulb test probe ; thing should click wide open, and idle rpm should increase... ...that said though, if it starts & idles with the TPS unit disconnected, and it still stalls when it gets up to operating temperature, it won't be the IACV because it's unused, which would infer something else is winking out...  
×
×
  • Create New...