Jump to content
SAU Community

Recommended Posts

  • 1 month later...

New result to share. This is an ATR45SAT ball bearing bolton turbo running of an external gate from factory exhaust manifold. Car is an R34 GTT with a freshed up Rb25det NEO engine. Car made 420rwkws @ 25psi of boost E85 fuel, 240rwkws @ 4000RPM, Nice and responsive. 

spacer.png

 

spacer.png

 

 

  • Like 2
  • 2 weeks later...
New result to share. This is an ATR45SAT ball bearing bolton turbo running of an external gate from factory exhaust manifold. Car is an R34 GTT with a freshed up Rb25det NEO engine. Car made 420rwkws @ 25psi of boost E85 fuel, 240rwkws @ 4000RPM, Nice and responsive. 
power.jpg&key=91cf0f95b9a5de09e3b2e49c223b7f9ad46c620075f2242c13768e6310ac984a
 
boost.jpg&key=14d9ac558f5b9d5cbe0f19f7ed5fb73d4d02474e4b18df3990160d2729303606
 
 



Is there a twin scroll housing that would fit this turbine?

I can supply a .84 rear housing in twin scroll. It won't be as responsive. If you have a twin pulse twin gate manifold, you can use the .63 single housing with an ATR45SS-1 to make 450rwkws+ while still have similar response as above. 

I can supply a .84 rear housing in twin scroll. It won't be as responsive. If you have a twin pulse twin gate manifold, you can use the .63 single housing with an ATR45SS-1 to make 450rwkws+ while still have similar response as above. 


Have you tested it with the .84 twin scroll rear on a true twin scroll twin gate manifold?

I would be genuinely surprised if it was less responsive [emoji848]
4 hours ago, LaurelPWR said:

 


Have you tested it with the .84 twin scroll rear on a true twin scroll twin gate manifold?

I would be genuinely surprised if it was less responsive emoji848.png

 

Same thought, a true twin scroll and proper divided setup would be more responsive than a single scroll.

  • Like 1
20 minutes ago, Dose Pipe Sutututu said:

Same thought, a true twin scroll and proper divided setup would be more responsive than a single scroll.

Interesting thing happened around here recently, a guy with a 2litre Subaru running a twin scroll manifold and a open housing .63 GTX3076R decided he was happy with the power he was making but wanted more spool so swapped to a .61a/r divided hotside - using the same exhaust manifold, but changing the up-pipe to suit the twin scroll housing.  The car improved spool by a couple hundred rpm and lost around 50kw @ wheels.

After going through a bunch of diagnostics and deciding there were no other issues or changes other than the housing/flange setup he tried changing to a .83a/r twin scroll housing and it got back within 20kw of the .63 housing, but was also no better spool than with the open housing option.


Again, after further head scratching and messing around he decided to swap back to the original up-pipe and .63a/r housing and boom!  Back to the same power and response he had before trying the divided path.   Definitely not what I would have expected, but it's a thing that happened - unfortunately I am not directly involved so I have no more detail than what I've shared here, I wouldn't count out the possibility there is some other variable at play but realistically the options are pretty minimal... especially when it came back to "full power and response".   The car is definitely performing overall better with the .63 hotside.

  • Like 2
3 minutes ago, Dose Pipe Sutututu said:

Only thing I can think of with the EJ, is the turbo manifold of equal header lengths or is it the usual unequal length business?

The twin scroll turbo manifolds are equal length, which is why a lot of the later Subarus don't sound like 5-cylinder RBs :)

  • Like 2
18 minutes ago, Lithium said:

The twin scroll turbo manifolds are equal length, which is why a lot of the later Subarus don't sound like 5-cylinder RBs :)

Interesting nevertheless, hopefully my selection of parts will work.

Car is coming out of fab work this week.

  • Like 1

Why should twin scroll exhaust manifold and housing make slightly better response. It very dependent on the design of the actual exhaust manifold and of course the firing sequence of the engine. Lets take Rb25det with firing sequence of:

1 5 3 6 2 4

Stock twin pulse log manifold consist bank 1 of: CYC 123, and bank 2 of: 456. 

So the split plus ensures the combusted air shoots straight into turbine housing rather then towards the other side. I've seen customers drilling out the center divider of factory exhaust manifold result in lose of response and power. I'm currently using a merged pulse external gate on a factory exhaust manifold, and by doing that I have lose about 300RPM of response, I think it would partly contributed the this problem and the extra volume external gate plumbing has made up.

Same principle apply to a spaghetti manifolds, but I found its not as tangible as the runners are separated that ends up in a collector. So there will be a bit of a differences assume a properly made twin pulse, twin gated exhaust manifold used on the right size twin pulse turbine housing. 

The advantage of twin gates giving extra flow would mean you can use a smaller housing on a turbo that makes the same top end as a big housing while avoiding the lag. 

 

Edited by hypergear
6 hours ago, hypergear said:

Why should twin scroll exhaust manifold and housing make slightly better response.

So the split plus ensures the combusted air shoots straight into turbine housing rather then towards the other side. I've seen customers drilling out the center divider of factory exhaust manifold result in lose of response and power. I'm currently using a merged pulse external gate on a factory exhaust manifold, and by doing that I have lose about 300RPM of response, I think it would partly contributed the this problem and the extra volume external gate plumbing has made up.

The advantage of twin gates giving extra flow would mean you can use a smaller housing on a turbo that makes the same top end as a big housing while avoiding the lag. 

The theory on split pulse is pretty well discussed these days, reduces the collisions between high pressure pulses and keeps them separate until they are meant to drive the turbine.  I suppose you could say that it should reduce turbulence and as such keep velocity up.

In regards to people removing the divider in the stock manifold, I think of that more like a turning vane than a split pulse - without it there is nothing to make the exhaust flow think that it should just head straight to the other cylinders due the shape angles required to head to the turbine.  I am not sure that has so much relevance in the twin scroll/split pulse discussion, aside from the fact that the only reason that is at all a workable design with a straight 6 is that you have alternating pulses on front and rear three so it makes it less likely to cause bizarre lean outs on certain cylinders.

In terms of the twin gate advantage meaning that a smaller housing can flow like a bigger one, I could be missing something or misinterpreting  - so how do you mean?   

At face value it seems like you are saying that having more gate means you will reduce exhaust manifold pressure, but just having a second gate won't increase the turbine's ability to drive the compressor for a given amount of exhaust gas, so there is no reason for it to open more... the only reason the wastegate would flow more is if the turbine needs less exhaust energy to do it's job.   It's pretty easy to tell where more gate is an advantage, you get boost creep as you aren't relieving enough exhaust gas.   If you relieve more exhaust gas then you lose the energy you need to drive the turbine and you don't hit target boost.  

Apologies if I've misunderstood what you said, keen to hear what you mean or where you are coming from with that one.

Edited by Lithium
  • Like 1

I was referring to stock rb25det manifold.  

The twin gate setup, I found its dependent on  the types and shape of turbine wheel as well as size of housing used. I will conduct some experiments later in the year and upload results.

 

 

Edited by hypergear
  • 3 weeks later...
  • 4 weeks later...

Further development in R33 21U high flowed turbochargers. Latest model made 342rwkws fItted to an unopened R33 Rb25det engine as a bolton turbo with FMIC, 3 inches metal intake pipe, 3.5 inches turbo back exhaust, fuel system and programmable ecu.

front.jpg

342rwkw.jpg

boost.jpg  

 

Further development in R33 21U high flowed turbochargers. Latest model made 342rwkws fItted to an unopened R33 Rb25det engine as a bolton turbo with FMIC, 3 inches metal intake pipe, 3.5 inches turbo back exhaust, fuel system and programmable ecu.
front.jpg&key=caaeb2150ace5ab8b3b06e4e35294e2ad8ab539f439990224ac44dee9dfd5c88
342rwkw.jpg&key=0efdb1717652166f679d618c0fcb8f80aeb601c16903e7615b2e875fb27482d8
boost.jpg&key=55370b7ecdcc31a1415905d79e1348c58ce331d99f09daca69f585907f58ec6c  
 



I’m guessing that’s on e85?
Have you done many test with 98ron?
6 hours ago, hypergear said:

Yes that is on E85. I don't have result of this version on 98 yet. it would be sitting pretty close to 300rwkws on that car. 

by the looks of the graph did the boys at G7 Adelaide do the install in tuning ? if so It looks like ill be giving them a visit! Great stuff Tao!

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Yeah, the latter. No diff should have a centre replaced without checking clearances because its unlikely to be the same as whatever came out. Not that that stops most people just checking a new centre in
    • Major thread necro but how bad of a job is it to DIY? Looking at it online it looks like if you reuse your ring and pinion as long as those are in good condition it should be fine to just pull the axles/front cover and replace the diff that way? Or should I be replacing everything and doing preload measurements/gear mesh testing like the factory service manual mentions for the rear diff?
    • in my list I had the R33 GTR as the best Skyline. Infact I had all GTR's (33>34=32), the NSX, the GTO, the 300ZX, the 180SX, the S15 better than the FD RX7. I had the MR2 and the A80 as 'just' better. I also think the DC5R Integra looks better but this is an 01 onwards car. I also think the FC>FD. It's almost like aesthetics are individual! The elements @GTSBoy likes about the FD and dislikes about the 180 are inverse in my eyes. I hate the rear end of the FD and it's weird tail lights that are bulbous and remind me of early hyundai excels. They are not striking, nor iconic, nor retro cool. The GTO has supercar proportions. I maintain these look much better in person (like the NSX) especially with nice wheels and suspension which is mandatory for all cars pretty much. Some (or all) of these you have to see in person to appreciate. You can't write a car off until you see one in the flesh IMO. Like most people we probably just like/dislike cars which represent certain eras of design or design styles in general. I also think the 60's Jag E type looks HORRIBLE, literally disgusting, and the 2000GT is nothing to write home about. FWIW I don't think the Dodge Viper Gen1's have aged very well either. You can probably see where I rate bubbly coupes like the FD. I know we're straying now but the C4 and C5 absolutely murder the Viper in the looks department as time goes on, for my eyes. Wouldn't surprise me if people who love the FD, also love the MX5, Dodge Viper, Jag E Type, etc etc.
    • I used to hate R31s, and any of the other Nissans that led up to it, and any of the Toyotas with similar styling, because of the boxiness. They were, and remain, childish, simplistic, and generally awful. I appreciate R31s a lot more now, but only the JDM 2 door. The ADM 4 door (and any other 4 door, even if they are unique compared to our local one) can eat a bowl of dicks. The Aussie R31 is also forever tarnished by their association with stereotypical bong clutching Aussie R31 owners of the 90s and early 2000s. I think the Nissans of the 70s (other than 120Y/180B/200B) are far superior looking to the 80s cars. The 240K era Skylines are boss. The same is broadly true of Toyotas. Hondas don't ever register in my thinking, from any era. Mitsus are all horrid shitboxen in any era, and so also don't register. Subarus are always awful, ditto. Daihatsus and Suzukis also don't generally register. They are all invisible. I think the SW20 MR2 looks fiddly. The 3000GT/GTO is like that but way worse. Too many silly plastic barnacles and fiddly gimmicks ruined what could have been a really nice base shape. Kinda-sorta looks like a big heavy ST165 Celica coupe (and I'm not sure if that's a good thing or a bad thing). I think the 180SX is dreadfully bland. It's not bad looking. But it has no excitement to it at all. It's just a liftback coupe thing with no interest in its lines, and bad graphical elements (ie wide expanses of taillight plastic on the rear garnish). The S13 Silvia is a little better - getting closer to R32 shapes. But still....bland. S14? Nope. Don't love it. S15...a little better. Probably a lot better, actually. Benefits from not being like a shrunk in the wash R34 (where the S13 was a shrunk in the wash R32 and the S14 looked like a Pulsar or something else from the stable on Nissan mid 90s horrors). The Z32 was hot as f**k when it came out but hasn't aged as well as the A80. Keep in mind that I think the R33 is the most disgusting looking thing - and out of all the previous cars mentioned is objectively closest to my precious R32. It's just....real bad, almost everywhere you look. And that is down to the majority of what was designed in the 90s being shit. All Nissans from that era look like shit. Most other brands ditto. In that context, the FD absolutely stands out as being by far the best looking car, for reasons already discussed. Going behind the aesthetics, the suspension alone makes it better than almost any other car.  
    • If they just called it the "Mazda Tiffany", it would have been spot on.
×
×
  • Create New...