Jump to content
SAU Community

Recommended Posts

This is some engine:

Maximum power: 108,920 hp at 102 rpm

Maximum torque: 5,608,312 lb/ft at 102rpm

post-32489-1241066333_thumb.jpg

The Wartsila-Sulzer RTA96-C turbocharged two-stroke diesel engine is the most powerful and most efficient prime-mover in the world today. The Aioi Works of Japan 's Diesel United, Ltd built the first engines and is where some of these pictures were taken. It is available in 6 through 14 cylinder versions, all are inline engines. These engines were designed primarily for very large container ships. Ship owners like a single engine/single propeller design and the new generation of larger container ships needed a bigger engine to propel them. The cylinder bore is just under 38" and the stroke is just over 98". Each cylinder displaces 111,143 cubic inches (1820 liters) and produces 7780 horsepower. Total displacement comes out to 1,556,002 cubic inches (25,480 liters) for the fourteen cylinder version.

Some facts on the 14 cylinder version:

Total engine weight: 2300 tons (The crankshaft alone weighs 300 tons.)

Length: 89 feet

Height: 44 feet

Maximum power: 108,920 hp at 102 rpm

Maximum torque: 5,608,312 lb/ft at 102rpm

Fuel consumption at maximum power is 0.278 lbs per hp per hour (Brake Specific Fuel Consumption). Fuel consumption at maximum economy is 0.260 lbs/hp/hour. At maximum economy the engine exceeds 50% thermal efficiency. That is, more than 50% of the energy in the fuel in converted to motion.

For comparison, most automotive and small aircraft engines have BSFC figures in the 0.40-0.60 lbs/hp/hr range and 25-30% thermal efficiency range.

Even at its most efficient power setting, the big 14 consumes 1,660 gallons of heavy fuel oil per hour.

post-32489-1241066605_thumb.jpg

The internals of this engine are a bit different than most automotive engines.

The top of the connecting rod is not attached directly to the piston. The top of the connecting rod attaches to a "crosshead" which rides in guide channels. A long piston rod then connects the crosshead to the piston.

I assume this is done so the the sideways forces produced by the connecting rod are absorbed by the crosshead and not by the piston. Those sideways forces are what makes the cylinders in an auto engine get oval-shaped over time.

Installing the "thin-shell" bearings. Crank & rod journals are 38" in diameter and 16" wide:

post-32489-1241066612_thumb.jpg

The crank sitting in the block (also known as a "gondola-style" bedplate). This is a 10 cylinder version. Note the steps by each crank throw that lead down into the crankcase:

post-32489-1241066619_thumb.jpg

A piston & piston rod assembly. The piston is at the top. The large square plate at the bottom is where the whole assembly attaches to the crosshead:

post-32489-1241066624_thumb.jpg

Some pistons:

post-32489-1241066629_thumb.jpg

And some piston rods:

post-32489-1241066636_thumb.jpg

The "spikes" on the piston rods are hollow tubes that go into the holes you can see on the bottom of the pistons (left picture) and inject oil into the inside of the piston which keeps the top of the piston from overheating. Some high-performance auto engines have a similar feature where an oil squirter nozzle squirts oil onto the bottom of the piston.

The cylinder deck (10 cylinder version). Cylinder liners are die-cast ductile cast iron. Look at the size of those head studs!:

post-32489-1241066645_thumb.jpg

The first completed 12 cylinder engine:

post-32489-1241066651_thumb.jpg

Link to comment
https://www.sau.com.au/forums/topic/267770-worlds-largest-engine/
Share on other sites

I have a friend who works on big diesel ship engines, he said to stop the boat they run the engine in reverse. Only it can take up to 30 mins to get it running backwards and then it can backfire and blow the massive turbo to bits!!

Also, not only is this the worlds biggest engine, but the worlds biggest repost.

I want that turbo for my car! does it dose bro cuz chich man re uleh

sweet... drop a brick on the accelerator and go to bed, and by the time you wake up the next morning and get in the car, you should have enough boost for a launch...

sweet... drop a brick on the accelerator and go to bed, and by the time you wake up the next morning and get in the car, you should have enough boost for a launch...

Nah you just need an rb26 that revs to 1,000,000RPM :banana:

  • 2 weeks later...

Can someone get in contact with them and find out if they are parting the engine? I'm looking to upgrade my throttle body to a throttle room.

Mines will probably crack its ECU and release an upgrade.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Not R7R. Meant to type R&R, obviously enough.
    • Bugger "making it look stock". I put one conventional internally fused Hella relay behind each globe. I just pulled the plugs off the back of the globes and built new loom segments with male and female plug parts to match up to the original loom and the globe, and used the original power wires to each globe coming from the switch through the original loom plug to trigger the relays. Ran a big fat (also separately fused) power wire across the front of the car to feed all the relays. It's as ugly as f**k, but it is wedged down between the headlight and battery on the RHS and the airbox and headlight on the LHS, and no-one ever looks in my engine bay, and on the odd occasion that they do I simply give no f**ks for what they think. Fully reversible - not that you'd ever want to. For f**k's sake. It's a Skyline. They made million of the bloody things. We've been crashing them into roadside furniture for 30 years now. There is a negative side effect to putting relays on the headlights. The coil current is too little to properly clean the contacts in the switches and they get blacked up and you have to open them up every couple of years and clean them manually. I have 25 years of experience on this point.
    • I was poking through the R34 wiring diagrams vs R33 and noticed that the R34 has proper headlight relays while the R33 is like the R32 and sends full headlight power through the headlight switch. I'm not afraid of wiring but I really would like to do this in a way that looks OEM (clipping into open positions on the OEM relay box) and also unlike the factory wiring which interlocks the high beam and low beam on the halogen series 1 GTR headlights I want to make it such that turning on the high beams keeps the low beams on as well. Any advice on how to locate the specific connectors + crimp terminals + relays I need? I was thinking one NO relay for low beams and another for combined high + low running off the factory high beam headlight connector. I don't really want to splice into a crusty old probably discontinued factory harness so fully reversible is my goal here.
    • Pretty sure they run the same engine as the Q50 hybrid which specifies 95 RON.  I ran 98 in mine for a while, but it made no difference in performance or economy, so I have been using 95 for the last few years.  I have never hit 6.0L/100km, but have returned mid to high 6 on the highway.  Being a hybrid, fuel economy is a lot more dependant on how you drive it.  At 110km/h, mine never goes into EV mode on the highway, so returns closer to 7.5L/100. urban driving can return low 8s if you are careful or over 10 if you are a bit more enthusiastic on the throttle.
    • About a quarter of what you want to do. It's only R7R, not R&dismantle&replaceparts&reassemble&R. ? It is stock. I already told you, you will NOT have broken those. It's f**king 4th gear for Christ's sake. You just chipped the teeth off.
×
×
  • Create New...