Jump to content
SAU Community

Recommended Posts

Finally got my R on the dyno today.

All i have done is 3" cat back with a cat removal pipe (yay nz)

It came up with 222 at the rears on 16psi. Now I know thats not really stock boost but it still has the restrictor in it and removing it only got me 2 psi and 8kw.

Is it normal for boost to be this high with just the exhaust fitted?

Link to comment
https://www.sau.com.au/forums/topic/296970-222rwkw-on-stock-boost/
Share on other sites

You are running GTR turbos @ 16psi?

That is not normal.

Power is a bit low, generally 1bar (14.7psi) will usually see 240-250rwkw. So considering you are running a bit more... not so good.

Start off by back the boost off to a safer level, 12-14psi max for GTR turbos (if one dies, it generally will kill your motor).

Then get some cam gears and a front pipe (fine with stock dumps), and then you should see a better result or similar, with less boost.

You are running GTR turbos @ 16psi?

That is not normal.

Power is a bit low, generally 1bar (14.7psi) will usually see 240-250rwkw. So considering you are running a bit more... not so good.

Start off by back the boost off to a safer level, 12-14psi max for GTR turbos (if one dies, it generally will kill your motor).

Then get some cam gears and a front pipe (fine with stock dumps), and then you should see a better result or similar, with less boost.

I would assume by his post that he does not have a boost controller. He won't be able to back boost off

Well he removed the restrictor and gained another 2psi (18psi peak), is what i took from the way he worded it...

If there is a hole/split in the line then it is entirely possible to have increased boost without adjusting the actuators or a boost controller of some description.

Well he removed the restrictor and gained another 2psi (18psi peak), is what i took from the way he worded it...

If there is a hole/split in the line then it is entirely possible to have increased boost without adjusting the actuators or a boost controller of some description.

Yeah thats right, 18psi with the restrictor out. No other boost control system. What size is the hole in the restrictor meant to be?

Its weird tho, the dyno graph starts with boost already at 2psi at 40kmh in 3rd, so Im wondering if his sensor is a bit out and its actually running 14psi. Will have to get my own gauge and double check it.

How come one turbo dying takes out the motor?

ceramic exhaust wheel, usually the rear turbo.

wheel shatters, sends ceramic shards/dust back onto the piston - do a search mate, plenty of detailed threads with pictures etc etc.

basically the older the turbos, the more risk you run when going over 12-14psi

I tried to find an answer to that very question Brandon and no one came forth as such. Still it appears to be common knowledge so it would be highly recommended to make sure you are running safe boost levels for stock turbos.

I tried to find an answer to that very question Brandon and no one came forth as such. Still it appears to be common knowledge so it would be highly recommended to make sure you are running safe boost levels for stock turbos.

Yea, same here. Not that it affects me but whenever someone ask what pressure should they be running for stock turbo, I'll just reply 12psi to be safe. Some lucky ones may have gotten away with 14psi or 15psi for years but you cant expect every single turbo's the same. Morale of the story is, I rather be safe than sorry. You've got no one else to blame but yourself if it does shits itself.

It'll be a very costly experience or lesson to learn.

Actually I reread the thread and the data is fairly conclusive. Dead turbo results in ceramic dust being embedded in the piston on the exhaust side, check the photos out :action-smiley-069:.

http://www.skylinesaustralia.com/forums/De...ad-t283890.html

I was gonna say - its pretty clear and conclusive what can happen, pictures are clear evidence of it occuring despite the what the "theorists" might tell you about it not being possible.

Not to doubt anything you are saying but can you PM me links to at least one of those threads. I would like to do some reading on the topic and find where they have had the 'dust' tested and confirmed it is actually ceramic

There is one linked above already?!?!

Considering it is on the exhaust side of the piston, what else is it honestly going to be after a turbo has let go?

Dirt? Sand? Come on...

EDIT: i know, they must be tiny rocks that started off as big rocks that made it past the air filter, were minced up by the compressor wheel, sent through the cooler and TB's and then somehow ended up soley on the exhaust side! :D

No, if its dust or rocks then its drugs! nothing to do with ceramics. If you have negative pressure in the motor compared to the turbine or exhaust then the air will flow to that negative pressure...simple really.

Any hard and non combustible object entering the combustion chamber = bad. Ceramic turbos are a time bomb for your engine if you're overboosting them...might aswell take off your air filter for better flow too :D

Also note it varies from compressor to compressor and engine to engine how much psi you can get away with on stock ceramic turbos.

Finally got my R on the dyno today.

All i have done is 3" cat back with a cat removal pipe (yay nz)

It came up with 222 at the rears on 16psi. Now I know thats not really stock boost but it still has the restrictor in it and removing it only got me 2 psi and 8kw.

Is it normal for boost to be this high with just the exhaust fitted?

yep soon as the restrictor is removed the std ecu pours in the fuel and dumbs it down. Most GTR's will pull around 190-200rwkw with a stock ecu, with a mines ecu they will pull around 220 (loads more timing about 29 degrees peak but still rich) a remap will yeild 230rwkw at less boost or 240kw with the restrictor removed and the remap controlling boost.... Sarumatix yours still has the highest reading on my dyno for a std rb26 so dont worry..... yet :D

Edited by URAS
There is one linked above already?!?!

Considering it is on the exhaust side of the piston, what else is it honestly going to be after a turbo has let go?

Dirt? Sand? Come on...

EDIT: i know, they must be tiny rocks that started off as big rocks that made it past the air filter, were minced up by the compressor wheel, sent through the cooler and TB's and then somehow ended up soley on the exhaust side! :)

ROFL.

Yes, not saying it isn't ceramic but no one has actually proven it to be that.

Keep in mind that you are talking about dust, not chunks, and when a turbine wheel comes off, what happens to the comp wheel? It starts machining the housing away at the front. This creates dust also. What happens to alloy dust when you burn it? It looks like what you'd imagine ceramic to look like.

Theories of engines sucking blades back into themselves is a bit far fetched. Can happen, I'm sure, but you guys all make out like it's going to happen to every single GTR turbo that ever existed.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Wideband is worth setting up if only for tuning purposes. I would not mess with the ignition system unless there's a misfire. HKS crank trigger is popular out here for the relatively easily sourced Denso crank sensor, not a bad idea to install as well regardless of power level on a standalone. Boost leak test is worth thinking about. Oil pressure sensor tied to a fuel cut isn't a bad idea either. Getting the tune figured out is a good idea. Without putting eyes on it and getting under it there's no way for us to tell you exactly what it needs but most likely you're down to the last 10% that will make a big, big difference in how happy you are with the car.
    • Doing a refresh of my 33 and can see a few websites stating they sell the entire main carpet for our cars, but they all have generic photos which is fine, i understand they are custom made to order.  Just seeing if anyone has got it done or had any experience with this, as i would only want to do it if the fit and finish was as good as oem https://carmatsdirect.com.au/products/moulded-carpet-or-vinyl-for-nissan-skyline-r33-1993-1998-coupe https://knoxautocarpets.com.au/moulded-carpets/nissan/skyline/skyline-r-33-1993-1998/
    • Any plans for E85? If so, add flex fuel sensor.   I'd probably add in the sensors I mentioned above if the Link will support using them for engine protection. With water pressure, you need to be able to effectively set it that "If temp > X, and pressure = atmospheric, shutdown" as at running temp, you should be able to read pressure in the cooling system. If pressure suddenly disappears, it means the water went some where, and this is a quicker reaction than waiting on water temp to go up (Which, can take a little longer than you'd like, considering it now has to wait for hot air to heat it up) Oil pressure, Oil temp, both would be on my list too if you're looking to add sensors. Wideband O2. And at least one EGT sensor. If you're feeling deluxe, put in individual runner EGTs. Single EGT sensor is more so forget about a specific number, get used to "What is normal EGTs", and then keep an eye on it, if it starts going away from "normal" it's a sign something is wrong (Also, things like the tune can still start going out of spec, but EGTs may not show it, for example one injector starts running leaning, so ECU richens everything up, now 5 out of 6 cylinders are rich, and running cool, with one cylinder lean and running hotter, so it's not perfect) Then there is your other things to look at non sensor related, but you may have already done, or have underway, and that would be things like building a sump for more oil, and better oil control under high G-Forces (Cornering, brakes, acceleration). Basically, the above is worth looking/thinking about, if the ECU can do protective stuff with it, and you continue to use it how you are (Drive it to the track, thrash it, drive home, repeat once every 3 to 4 months)
    • Can also confirm these work a treat for most balljoints and bushes. If you have access to a big rattle gun, they make the job so much easier and quicker, compared to using a socket wrench or shifter on the c-clamp 👍
    • Its sort of street but got used for circuit sprints on account of I never drive it on the road because I dont have the time to spare. So it usage was sits around for months at a time then gets driven either 50 or 250 kms to the track followed by 20 laps followed by 50 or 250kms home followed by stuck in the shed until next time. So yeah neither fish nor fowl. Just dont want to break it on the track as a preference. Hence the fairly short sensor/mod list. Probably more worried about it pinging itself to destruction more so than anything oil related.
×
×
  • Create New...