Jump to content
SAU Community

Recommended Posts

I have just started up my new motor to find it blows smoke from the turbo's due to the turbo bearing housing having to much pressure and pumping past the turbine ring. My oil return lines are a -8 going into a -14 T-Piece on the block in the stock location. HKS have a kit that does the same so the T isn't an issue.

I am however not sure if my return lines are to small and or my Reimax oil pump(huge gears) is pumping a stack more oil than std(definate). I plan on installing some .8mm restrictors into the oil banjo bolts and see how it goes. If that doesn't work I will look at my oil drain sizing. Will check my PVC aswell to make sure the crank case doesn't have to mauch pressure.

Has anyone had experience with this issue and aftermarket oil pumps?

any idea's?

pls help

Matt

Edited by BoostdR

what turbs?

mine are bush bearing (r32 N1) and have no oil restrictor - i have the same issue with my nitto oil pump.

presumably it is not such an issue with ball bearing turbos which should run an oil feed restrictor.

Turbo's are HKS GTRS (Garrett gt2860R-10)

They are ball bearing, so should have a prefitted restrictor....but that would suit the std oil pump.

Here are the specs of my pump....pumps alot more

The Reimax Oil Pump is the perfect replacement for the Achilles Heel of the RB26DETT. The OEM unit is notorious for starving tuned RB engines of oil at high RPM`s.

The Inner Rotor size has been increased from 77mm to 85mm, and the thickness of the rotor teeth has gone up from 11mm to 12mm.

The metal composition of the pump has also been changed from Sintered Alloy to SCM430H.

At 6000rpm, the Reimax High Flow Oil Pump flows 70L/min VS 47L/min from the OEM unit.

The pump's Regulator Valve opens at 7.2kg/cm2 (+/-0.3kg/cm2) of pressure, at 2000rpms, or when oil temperature hits 80 degrees Celsius.

Not only does this item boast great figures, it has also proven its build quality in Gr-A races throughout Japan.

1. That pump flows similar to an N1 oil pump

2. Those turbos aren't smoking because of the oil pump

Check your engine by doing a compression and leakdown test and then if they come up ok, check the breather system on the cam covers to ensure nothing is blocked

Well aside from the fact it's not actually oil starvation that is the achillies heel (its infact the head/restrictors, given 1ltr overfill fixes it)

You might well need inline restrictors.

Seems a few people running high volume pumps have this problem as the internal cartridge restrictors aren't enough - no idea why given plenty of others have no issues (strange)

You'd want them the same size as inline, don't wanna go any smaller.

I don't think it'll be the drain either as you've stated - its the same as what comes with the kit.

You could always just run one turbo for 1min and workout the volume approx if you are worried thats the problem

thanks for the replies. I will keep you all informed on my findings.

What size is the internal oil restrictor?

I would love for it to not be the turbo's and just my rings taking a while to seal. The motor has only been run for 10min since rebuild around the block.

1. That pump flows similar to an N1 oil pump

2. Those turbos aren't smoking because of the oil pump

Check your engine by doing a compression and leakdown test and then if they come up ok, check the breather system on the cam covers to ensure nothing is blocked

Hi Elite. I know you have a stack of experience on the subject. Can you elaborate why it can't be my turbo's? I have braded oil return lines that don't go directly down also as the std do. i think the front even travels up hill for a very small time before going into the Tee as its mounted on a slant...I'll post a pick when I get home in 30min.

matt

Hi Elite. I know you have a stack of experience on the subject. Can you elaborate why it can't be my turbo's? I have braded oil return lines that don't go directly down also as the std do. i think the front even travels up hill for a very small time before going into the Tee as its mounted on a slant...I'll post a pick when I get home in 30min.

matt

Ok yeah if you could posts some pics that would be good.

The oil pump does not flow enough to bother those turbos. So it's gotta be something like the oil drain, the breathers, or the rings. Depends on what the builder used to assemble the engine. If he used engine oil (I cry when I see this) then it will smoke for a while.

Also depends on if the engine failed before, you can have a lot of oil built up in the exhaust from a previous engine failure.

Make sure you don't run that thing at idle for any more than 1 minute. Get it on decel on hills as much as you can and hold the foot brake in 5th while climbing hills. Will bed rings in better that way. But follow your builders instructions if he has given any

Ok yeah if you could posts some pics that would be good.

The oil pump does not flow enough to bother those turbos. So it's gotta be something like the oil drain, the breathers, or the rings. Depends on what the builder used to assemble the engine. If he used engine oil (I cry when I see this) then it will smoke for a while.

Also depends on if the engine failed before, you can have a lot of oil built up in the exhaust from a previous engine failure.

Make sure you don't run that thing at idle for any more than 1 minute. Get it on decel on hills as much as you can and hold the foot brake in 5th while climbing hills. Will bed rings in better that way. But follow your builders instructions if he has given any

He uses nulon assemble stuff...real sticky white coloured goo. No engine failure before and a new exhaust.

post-49288-1279633882_thumb.jpg

post-49288-1279633905_thumb.jpg

Just give it to me, Ill fix it. FYI you have one of my dream setups.

I dont personally see those returns being an issue. How is crank ventilation taken care of after the build? Running stock or has added breathers/catch can?

+1 comp and leakdown to proceed.

Just for another piece of info i just fitted a pair of genuine brand new hks gtss to my 26 and in the kit it came with 2 replacement banjo bolts with very small restrictors in them to replace the standard oil feed ones to the turbos. i have heard that oil flow needs to be reduced to ball bearing turbos a few times in the past as well. Sorry i cant tell you what size the restrictor was in the bolts but it was alot smaller than the one in the turbo cartridge.

Yes a comp and leakdown test are good ideas but i would be calling one of the turbo suppliers and seeing what they sayabout the restrictors first.

Just give it to me, Ill fix it. FYI you have one of my dream setups.

I dont personally see those returns being an issue. How is crank ventilation taken care of after the build? Running stock or has added breathers/catch can?

+1 comp and leakdown to proceed.

It has a catch can that runs inline with the stock setup. Same as with my old 26. I'm about to start testing. figures crossed.

ok. I have checked a few things.

The Oil pressure when cold is 7kg cm2

when half warm its 4.5kg cm2 (didn't want to let it idle to long)

I have found my front pipes are dripping with oil at the join in the lowest place when untightend. The comp is all good. Perfect actually. The plan is to fit some .8mm banjo restrictors in the bolt that on the side of the turbo.

Will call Enzed 2or pertek....or make my own

post-49288-1279672705_thumb.jpg

ok. I have checked a few things.

The Oil pressure when cold is 7kg cm2

when half warm its 4.5kg cm2 (didn't want to let it idle to long)

I have found my front pipes are dripping with oil at the join in the lowest place when untightend. The comp is all good. Perfect actually. The plan is to fit some .8mm banjo restrictors in the bolt that on the side of the turbo.

Will call Enzed 2or pertek....or make my own

Move that T piece down the the fitting that goes into the block, then run the lines from 45 deg out of that in an upward direction. -8 is probably a little too small also. The factory hose is like 19mm ID so even a -10 is pushing it

I think this will be your problem.....but even a stock oil pump would have done the same. Pooling in the return line is going to push oil out

Move that T piece down the the fitting that goes into the block, then run the lines from 45 deg out of that in an upward direction. -8 is probably a little too small also. The factory hose is like 19mm ID so even a -10 is pushing it

I think this will be your problem.....but even a stock oil pump would have done the same. Pooling in the return line is going to push oil out

I agree with Dan, also maybe ditch the T piece and change it to a Y piece.

I can see the oil pooling and the lower part of that T piece.

I didnt seen anyone else ask the question so I will... Did you not use the factor oil supply banjo bolt in the block that is marked with an M? The factory bolt has a restrictor built into it. I think the restrictor in the banjo bolt is about 1.5mm, to restrict flow for both turbo's. See attached pic.

It would be hard work getting access to that bolt with the engine in the car already... so like you are thinking, making up restrictors for each turbo is your next best bet.

I too have heard time and time again that the GT28 cores have internal restrictors, but if they really do ive yet to actually see them actually do their job and restrict oil flow even a little. I'd put money on the fact that if you were to connect a -3 fitting to any GT28 turbo and blow 100PSI of oil pressure to the feed line it will still leak into the intake and exhaust housings.

If you went down the aftermarket/custom hose path www.atpturbo.com sell a -3 restrictor with a 0.035" restrictor hole for the GT28 cores, that bolts straight into the turbo. In the past just made my own restrictors by filling a brass -3 fitting with solder and then just drilling it. Since the solder melts at 350 degrees there is no chance it will come loose and end up in the turbo.

post-26553-1279678333_thumb.jpg

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Jdm DC2R is also nice for a FF car compared to the regular hatches of the time.
    • Now that the break-in period for both clutch and transmission is nearly over I'd like to give some tips before I forget about everything that happened, also for anyone searching up how to do this job in the future: You will need at least 6 ton jack stands at full extension. I would go as far as to say maybe consider 12 ton jack stands because the height of the transmission + the Harbor Freight hydraulic platform-style transmission jack was enough that it was an absolute PITA getting the transmission out from under the car and back in. The top edge of the bellhousing wants to contact the subframe and oil pan and if you're doing this on the floor forget about trying to lift this transmission off the ground and onto a transmission jack from under the car. Also do not try to use a scissor jack transmission lift. You have to rotate the damn thing in-place on the transmission jack which is hard enough with an adjustable platform and a transmission cradle that will mostly keep the transmission from rolling off the jack but on a scissor lift with a tiny non-adjustable platform? Forget it. Use penetrating oil on the driveshaft bolts. I highly recommend getting a thin 6 point combination (box end + open end) wrench for both the rear driveshaft and front driveshaft and a wrench extension. These bolts are on tight with very little space to work with and those two things together made a massive difference. Even a high torque impact wrench is just the wrong tool for the job here and didn't do what I needed it to do. If your starter bolts aren't seized in place for whatever reason you can in fact snake in a 3/8 inch ratchet + 6 point standard chrome socket up in there and "just" remove the bolts for the starter. Or at least I could. It is entirely by feel, you can barely fit it in, you can barely turn the stupid ratchet, but it is possible. Pull the front pipe/downpipe before you attempt to remove the transmission. In theory you don't have to, in practice just do it.  When pulling the transmission on the way out you don't have to undo all the bolts holding the rear driveshaft to the chassis like the center support bearing and the rear tunnel reinforcement bar but putting the transmission back in I highly recommend doing this because it will let you raise the transmission without constantly dealing with the driveshaft interfering in one way or another. I undid the bottom of the engine mount but I honestly don't know that it helped anything. If you do this make sure you put a towel on the back of the valve cover to keep the engine from smashing all the pipes on the firewall. Once the transmission has been pulled back far enough to clear the dowels you need to twist it in place clockwise if you're sitting behind the transmission. This will rotate the starter down towards the ground. The starter bump seems like it might clear if you twist the transmission the other way but it definitely won't. I have scraped the shit out of my transmission tunnel trying so learn from my mistake. You will need a center punch and an appropriate size drill bit and screw to pull the rear main seal. Then use vice grips and preferably a slide hammer attachment for those vice grips to yank the seal out. Do not let the drill or screw contact any part of the crank and clean the engine carefully after removing the seal to avoid getting metal fragments into the engine. I used a Slide Hammer and Bearing Puller Set, 5 Piece from Harbor Freight to pull the old pilot bearing. The "wet paper towel" trick sucked and just got dirty clutch water everywhere. Buy the tool or borrow it from a friend and save yourself the pain. It comes right out. Mine was very worn compared to the new one and it was starting to show cracks. Soak it in engine oil for a day in case yours has lost all of the oil to the plastic bag it comes in. You may be tempted to get the Nismo aftermarket pilot bearing but local mechanics have told me that they fail prematurely and if they do fail they do far more damage than a failed OEM pilot bushing. I mentioned this before but the Super Coppermix Twin clutch friction disks are in fact directional. The subtle coning of the fingers in both cases should be facing towards the center of the hub. So the coning on the rearmost disk closest to the pressure plate should go towards the engine, and the one closest to the flywheel should be flipped the other way. Otherwise when you torque down the pressure plate it will be warped and if you attempt to drive it like this it will make a very nasty grinding noise. Also, there is in fact an orientation to the washers for the pressure plate if you don't want to damage the anodizing. Rounded side of the washer faces the pressure plate. The flat side faces the bolt head. Pulling the transmission from the transfer case you need to be extremely careful with the shift cover plate. This part is discontinued. Try your best to avoid damaging the mating surfaces or breaking the pry points. I used a dead blow rubber hammer after removing the bolts to smack it sideways to slide it off the RTV the previous mechanic applied. I recommend using gasket dressing on the OEM paper gasket to try and keep the ATF from leaking out of that surface which seems to be a perpetual problem. Undoing the shifter rod end is an absolute PITA. Get a set of roll pin punches. Those are mandatory for this. Also I strongly, strongly recommend getting a palm nailer that will fit your roll pin punch. Also, put a clean (emphasis on clean) towel wrapped around the back end of the roll pin to keep it from shooting into the transfer case so you can spend a good hour or two with a magnet on a stick getting it out. Do not damage the shifter rod end either because those are discontinued as well. Do not use aftermarket flywheel bolts. Or if you do, make sure they are exactly the same dimensions as OEM before you go to install them. I have seen people mention that they got the wrong bolts and it meant having to do the job again. High torque impact wrench makes removal easy. I used some combination of a pry bar and flathead screwdriver to keep the flywheel from turning but consider just buying a proper flywheel lock instead. Just buy the OS Giken clutch alignment tool from RHDJapan. I hated the plastic alignment tool and you will never be confident this thing will work as intended. Don't forget to install the Nismo provided clutch fork boot. Otherwise it will make unearthly noises when you press the clutch pedal as it says on the little installation sheet in Japanese. Also, on both initial disassembly and assembly you must follow torque sequence for the pressure plate bolts. For some reason the Nismo directions tell you to put in the smaller 3 bolts last. I would not do this. Fully insert and thread those bolts to the end first, then tighten the other larger pressure plate bolts according to torque sequence. Then at the end you can also torque these 3 smaller bolts. Doing it the other way can cause these bolts to bind and the whole thing won't fit as it should. Hope this helps someone out there.
    • Every one has seemed to of have missed . . . . . . . The Mazda Cosmo . . . . . . what a MACHINE ! !
×
×
  • Create New...