Jump to content
SAU Community

Recommended Posts

  • Replies 97
  • Created
  • Last Reply

Top Posters In This Topic

Top Posters In This Topic

Posted Images

Great work Shaun and Stao,

I'm interested in seeing how this progresses. For those who doubt the theory consider bernoulii's theorem.

First assume the exhaust gas is not getting compressed (density is constant) and flow within the system is ideal, then the flow out of the head must equal the flow out the turbo. If the area to the turbo is halved then its velocity must increase by a factor of approximately 1.4 (Bernouli's theorem, Conservation of Energy). Momentum is then consequently increased by about 40% => 40% faster spool time.

So in an ideal theoretical world - it works great but a lot of R&D is required to reduce ineffeciences.

Stao: Is this sort of setup possible in one of your super street turbos? ;)

You mention twin scroll manifold....youre shutting off 3 cylinders until 4000rpm?

Twin scroll turbo, single outlet manifold for this setup. You want to make all the gas go through the turbo faster by making the area smaller until it starts to create backpressure in which case you begin opening the valve on the turbo slowly until it eventually is open entirely flowing entirely AFAIK.

i still don't understand how this works, the wheel and housing stays the same size, in my head it's like putting a restrictor in any part of the manifold, the diametre decreases, so the velocity increases through the restrictor, but as soon as the diametre increases again, it simply slows down again. i know this "restrictor" is immediately before the turbo, but it's still the same volume being pushed through the same area around the wheel.

i can only think there is some merit to the idea of the pressure being directed onto a more efficient part of the blades.

guys, my set up is a full divided twin scroll 6 boost amnifold and a gt4094 full twin scrioll turbo, what has happened is part of the twin scroll in the exhaust housing has been removed and fitted with a flap. the flap closes the rear most port of the twin scroll housing but at 45 degrees, this does 2 things . directs all 6 exhaust gases through the front scroll of the turbo exhaust housing, and 2, because its at 45 degrees reduces heat build and helps to increase the gas flow.

you do not do any mods to the manifold what soever.

as mentioned above, i run a link g4 ecu, i am going to fit a linear electric actuator, wired through a relay and driven by the ecu output using rpm to determine the gate opening piont.

thanks again for the contributions guys. will update as and when

You mention twin scroll manifold....youre shutting off 3 cylinders until 4000rpm?

The exhaust gases from 3 of the cylinders on one side of the manifold travels straight through to one scroll of the turbo housing and the exhaust gases from the other 3 cylinders enter their own scroll of the turbo housing but are redirected to join the same scroll of the turbo housing.

This redirecting occurs within the turbo housing itself.

This way the exhaust flow from all 6 cylinders are using only one scroll of the twin scroll turbo until the point that the valve is opened.

I am guessing when the valve does open you might get a small dip in boost pressure as the exhaust flow has to start from scratch on the second scroll?

I would assume so Harey, unless you can open it slowly.

My design didnt modify anything, it's removable and between the TS manifold and TS turbo housing as I wanted to keep the TS when the flap was open. I ended up not making it as the GTX4508 turbo I designed it to go under was too big to fit in the engine bay with 3 inches added to the manifold height.

I would assume so Harey, unless you can open it slowly.

My design didnt modify anything, it's removable and between the TS manifold and TS turbo housing as I wanted to keep the TS when the flap was open. I ended up not making it as the GTX4508 turbo I designed it to go under was too big to fit in the engine bay with 3 inches added to the manifold height.

Ah ok so your design is an piece that sits in between the manifold and turbo housing? So would raise the turbo up by the amount of your part.

GTX4508 turbo lol ur a nutter :)

Interesting bit of gear. I've also made a prototype with the similar sort of swing valve, the problem I've found is the exhaust manifold pressure on the flapper valve was too strong for the actuator to engage, which it never opens. But there are ways around it.

Can just you just use a very long lever with lots of mechanical advantage and a strong solenoid?

i still don't understand how this works, the wheel and housing stays the same size, in my head it's like putting a restrictor in any part of the manifold, the diametre decreases, so the velocity increases through the restrictor, but as soon as the diametre increases again, it simply slows down again. i know this "restrictor" is immediately before the turbo, but it's still the same volume being pushed through the same area around the wheel.

i can only think there is some merit to the idea of the pressure being directed onto a more efficient part of the blades.

You are using a twin scroll turbo so the turbo doesn't stay the same size.

Wouldn't it be better to switch it on load rather than rpm?

Ultimately you need a 3D map with rpm and boost (not load).

Edited by Rolls

now i want one :(

maybe the next build.

im already schemeing ways of doing the flap internal to the manifold rather than the turbo housing.

and trying to make it so the gasses dont load it up too much to open with an actuator.

hmmm, time to start drawing.

You are using a twin scroll turbo so the turbo doesn't stay the same size.

ok so the twin scroll stays separated right up until exiting the wheel? i was under the impression it was only separated til just before the wheel.

i'd like to see this thing tested on track cars, additional moving parts with track temps makes me nervous.

i would rather see a back swept design, which is spring loaded (adjustable) which is opened by exhaust gases, once the exhaust gases build up enough pressure, the flap starts opening, once they reduce, it closes back up. the design could be much simpler, with less parts to fail.

  • 1 month later...

The only reason why you can't do that Nisskid is due to the fact that it would eliminate the purpose of having the twin scroll turbine

housing as you wouldn't be able to block the center where the gas switches from one side to the other. You would how ever be able to run it like a standard v-band housing, even though you would be utilising a modified twin scroll housing and a divided manifold.

Hows it going with this anyway? Any more results? Looking at doing this with my build in the near future.

ok so the twin scroll stays separated right up until exiting the wheel? i was under the impression it was only separated til just before the wheel.

If you did that the turbo still sees the same mixed exhaust pulses, it has to be separated the entire way otherwise it won't be of any benefit, hence the separating takes up space and the AR is reduced for the same physical size.

By the way has anyone thought of using a stepper motor, similar to those found on the intakes of some cars in reference to boost pressure? Just use the ecu to put out a Pulse width modulated signal in accordance to boost.

You don't need to take it too full boost as its only when the engine is trying to begin to spool a turbine that takes the longest, so say if desired boost level is 24psi just make it full open at 14psi.

By doing that you eliminate any of the issues with exhaust restrictions, boost spikes, etc as the system would be regulated via the wastegate. Realistically rpm wouldn't really matter as its only operating on boost pressure imo.

Also the stepper motor running of a pulse width would be able to be opened gradually rather than straight open and shut

Having just read a thread about tuning VCT turbos on a 1uz, you need to remember that when the valve is shut, it has a big effect on the Volumetric efficiency of the engine, fuelling and timing changes will be massive compared to when the valve is open

I think the guy who did it ended up using an exhaust manifold pressure sensor and having the valve reference it to boost pressure. Basically he said you can make heaps of boost down low, but if the valves(s) are shut to make the boost, then the motor wont make any power. BTW it was all ecu controlled.

Edited by Adriano

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • I don’t really have any ideas how to set the timing on the CAS 😂, sounds like the top, sounds like it maybe misfiring as well as ticking,  got the box sorted 😌, must of been a air bubble on the clutch side
    • Use a 2' length of hose (that's 2 foot, not 2 inches) as a stethoscope to localise the source of the ticking. From cam covers? From exhaust or turbo manifold gasket? From injectors? From lower down in the engine? Etc. Use a timing light to set the timing. Put Redline Lightweight Shockproof in the box. It's not the very best thing for the box, but it will take a box that refuses to engage a gear with other oil, and make it engage a gear. I had to put it in when I installed the R33 box I have in my car. It would not select ANY gear when running. Smurf jizz made it work. That was >10 years ago and I still use it. I'm stuck with it now. Failing that - rebuild the box.
    • Well done Duncan. The fuel tank bulkhead lid is also in great condition (some of mine were stuffed). These are now out of production and good ones like that are becoming hard to come by.
    • Wow that's a steal, you've done well there. 
    • Exterior LEDs R34 2Dr R34 4Dr Position Lamp T10 T10 Winker front T20S T20S side T10 T10 rear T20S S25S150 Anti-hyfla relay TYPE3 TYPE3 tail T10 T20W Stop Lamps T20W T20W High Mount T16 T16 back T16 T20S number T10 T10 trunk T10 T10 Interior LED Item No.     Map Lamp BA9S single-sided     Room Lamps T10×31     Trunk Lamp T10     meter Early T6.5 pedestal     final T6.5 pedestal     NISMO T6.5 pedestal     Liquid crystal section T6.5 pedestal     Winker T6.5 pedestal     High Beam T6.5 pedestal     3 SERIES METER Early T6.5 pedestal     final T6.5 pedestal     NISMO T6.5 pedestal     air conditioner Early Liquid Crystal T3     Late LCD T4.2 Short     button T4.2 Middle     Hazard SW T3 Pedestal Short     Keyring T5     Cigar Socket T5
×
×
  • Create New...