Jump to content
SAU Community

Recommended Posts

The real problem here is that no one has called Nissan to inform them of their design flaw.

They clearly over spent on the much more expensive 2 piece design when they could have saved all that money making 1 piece shafts.

Forget engineering rules. This is obviously an oversight on their behalf. Someone should notify them

I asked these questions when it was made!

I picked up a 2 piece yesterday, gutting thing is I’ll need a second driveshaft loop and it certified!

I’m not keen on a high speed moment with the tailshaft doing some dub step death vibration

I’ll get onto Nissan and tell them to stop wasting time and money on the tailshaft and put it into forging the engine :domokun:

I asked these questions when it was made!

I picked up a 2 piece yesterday, gutting thing is I’ll need a second driveshaft loop and it certified!

I’m not keen on a high speed moment with the tailshaft doing some dub step death vibration

I’ll get onto Nissan and tell them to stop wasting time and money on the tailshaft and put it into forging the engine :domokun:

If you aren't having a problem with the shaft you have, why change it?

You will feel a vibration before anything worse happens.

It also depends on the material it's made from and how it was made (which is explained in detail in this thread).

If your shaft maker has made it from the correct material for the length and diameter then it might be perfectly fine

Remember that the critical speed is tailshaft speed, which you will only reach when you have very high road speed. 6000+ rpm at the tailshaft is fairly hiking, and is not going to happen on the road very often, and not happen on many racetracks for long either. That said, on a racecar, that will do that speed maybe once or twice every lap....you'll eventually have a bad moment, and that bad moment will upwards of 200km/hm, which you won't like. So, not a risk worth taking on a race car, and strangely enough, probably perfectly fine on a road car.

That said, I like the 2 piece design. Engineering wise it is much smarter, and does a better job of separating any movement of gearbag relative to diff from each other - not that it matters so much in an IRS car.

But for my overall preference, the only engineers who have ever really showed an interest in doing it properly are those from Peugot and Porsche (and a few others) who used a torque tube. I can remember reading that the solid driveshaft up the centre of the torque tube on a 928 was capable of absorbing something like 7 or 11 complete twists as it loaded up on launch with a 500+ HP engine in a race car. That is some serious business.

Steel does not have a fatigue life, it has a fatigue limit and as long as it is operated at a stress level below this then it should last for an unlimited no. of cycles.

Remember that the critical speed is tailshaft speed, which you will only reach when you have very high road speed. 6000+ rpm at the tailshaft is fairly hiking, and is not going to happen on the road very often, and not happen on many racetracks for long either. That said, on a racecar, that will do that speed maybe once or twice every lap....you'll eventually have a bad moment, and that bad moment will upwards of 200km/hm, which you won't like. So, not a risk worth taking on a race car, and strangely enough, probably perfectly fine on a road car.

That said, I like the 2 piece design. Engineering wise it is much smarter, and does a better job of separating any movement of gearbag relative to diff from each other - not that it matters so much in an IRS car.

But for my overall preference, the only engineers who have ever really showed an interest in doing it properly are those from Peugot and Porsche (and a few others) who used a torque tube. I can remember reading that the solid driveshaft up the centre of the torque tube on a 928 was capable of absorbing something like 7 or 11 complete twists as it loaded up on launch with a 500+ HP engine in a race car. That is some serious business.

6000 tail shaft rpm is the same as 6000 crankshaft rpm in 4th gear.

That's 111km/hr I'm pretty sure.

i think 4th at 6000 is around 165 ish km/h (with 4.3 diff)

Yeah my bad. I'm using an imperial calculator and that's MPH not KM/H.

So with a 4.11:1 it's 178km/h at 6000rpm on a 235/45/17 and 170km/h on a 4.3:1

Got my tailshaft today, I opted for the biggest unis I could get, they built the entire shaft using my old centre plates, and my sliding spline drive. Made everything else, heavier tube, 90x30 uni's that are solid, no grease galleries. The bloke at hardie spicer said it'll handle 1000 odd hp, and massive tourque, so I should never break this one!

I did have to flare the end of gearbox cover/shield to allow the uni to clear.

Best bit, replacable uni's!!!!

If anyone wants better photos of details etc just ask..

post-80095-0-65041300-1347274507_thumb.jpg

post-80095-0-09720100-1347274551_thumb.jpg

post-80095-0-95989600-1347274574_thumb.jpg

post-80095-0-10525700-1347274645_thumb.jpg

post-80095-0-11672800-1347274667_thumb.jpg

Got my tailshaft today, I opted for the biggest unis I could get, they built the entire shaft using my old centre plates, and my sliding spline drive. Made everything else, heavier tube, 90x30 uni's that are solid, no grease galleries. The bloke at hardie spicer said it'll handle 1000 odd hp, and massive tourque, so I should never break this one!

I did have to flare the end of gearbox cover/shield to allow the uni to clear.

Best bit, replacable uni's!!!!

If anyone wants better photos of details etc just ask..

That shield can be knocked out quite easily if you have trouble with it fouling. It's a dust guard for the rear seal so can be ditched with only minor ramifications.

That shield can be knocked out quite easily if you have trouble with it fouling. It's a dust guard for the rear seal so can be ditched with only minor ramifications.

Yeah I popped it out to flare it a little, id like to keep it on, but if it gets in the way still, ill machine up a s/s one the right size ;)

This is what happens to a single piece tailshaft at 8,300RPM. Its in an AE86 so the tailshaft isn't exactly all that long either. Guy had a tailshaft loop as well, it ripped it clean out, took half the gearbox out with it along with the shifter and the fuel lines. Punched 4x big holes in the floor.

There is another guy here in SA that had a Cefiro. Freshly built car, new very expensive engine, clutch, gearbox etc etc.

Tailshaft failed in 4th gear when he attempted his scando into turn one at Mallala. The shock was so severe to the car that it the car actually buckled, destroyed the gearbox and engine. Car was pretty much gone because of a failed tailshaft.

I for one, will not be putting my single piece shaft back in.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • They are what I will be installing. 640s for me.
    • Hmm... From my experience you get about 0.25° camber change per mm of RUCA length change. So, to correct from -2.5 up to less than -1° (or, more than -1° if you look at the world as a mathematician does) then you'd be making 6-8mm of length change on the RUCA. From a stock length of 308mm, that's 2-2.5% difference in RUCA length. My RUCAs are currently very close to stock length - certainly only 2-3mm different from stock. I had to adjust my tension arms by 6mm to minimise the bump steer. That's 6mm out of 210, which is 2.8%. That's a 2.8% change on those, compared to a <1% change on the RUCAs. So the stock geometry already has worse bump steer than is possible - you can improve it even if you don't change the RUCA length. If you lengthen the RUCAs at all, then you will definitely be adding bump steer. Again, with my car, I recently had an unpleasant amount of bump steer, stemming from a number of things that happened one after another without me having an opportunity to correct for them. I only had to change the tension arm lengths by 1mm to minimise the resulting bump steer. (Granted, I also had to dial out a lot of extra toe-in in the rear, and excessive rear toe-in will make bump steer behaviour worse). Relatively tiny little adjustments having been made - the car is now completely different. Was horrifying how much it wanted to steer from the rear on any significant single wheel bump/dip. And it was even bad on expansion joints on long sweepers on freeway entry/exits, which are notionally hitting both rear wheels at the same time. My point is, the crappy Nissan multilink is quite sensitive to these things (unlike the very nice Toyota suspension!). And I think 99.75% of Skyline owners are blissfully ignorant of what they are driving around on. Sadly, it is a non-trivial exercise to set up to measure and correct bump steer. I am happy to show my rig, which involves nasty chunks of wood bolted to the hub, mirrors, lasers, graph paper targets and other horrors. Just in case anyone wants to see how it is done. I'll just have to set it up to take the photos.
    • What do you have in that bad boy ? Ill go with the 725cc since I'll be going with Nistune ( would definitely like more engine protection but Haltech is too far out of reach at the moment... plus, Ill probably have a pretty safe tune as its a daily, not gonna be chasing peak power 24/7 ahahah ). Are Xspurt a safe choice?  Pete's great. He didnt mention anything about traction arm length so I reckon it may be good. When I get some new wheels/tire later down the road I'll ask him about it and get his opinion on em. I heard from Gary that you've got the bilsteins too, are you running the sway bars too? and what other suspension goodies do you have installed or would recommend?
    • In true Gregging style...  
×
×
  • Create New...