Jump to content
SAU Community

Recommended Posts

  • Replies 57
  • Created
  • Last Reply

Top Posters In This Topic

  • 2 weeks later...

Looks good John, what the best place to get that gold foil heat shielding?

Bonnet scoops right there near ram pods.

Gold heat shield stuff from Summmit Racing in USA.

PHATZVQ_000.jpg

The new VQ30DETT motor compared to the old VG30DETT.

The new motor is running less boost and is on e70 while the VG is running more boost and octane booster

UAS has also recently begun using Computational Fluid Dynamics (CFD) software to aid us in designing elements of our aerodynamics package.

Unforunately time and cost constraints make a true to life simulation a difficut task to achieve, as ideally every component down to the smallest washer should be modeled into the software and then animated to garner accurate results.

STANDARD CAR

FULL CAR SIMULATION

The above two videos show the flow trajectories over the UAS Zed and a standard 300ZX respectively. Though the models are rough they are enough to indicate significant changes in aerodynamic downforce and drag. The figures in the above simulations showed the UAS Zed generated five times more downforce than the standard 300ZX at 200km/h.

To give the exact measurements that is an increase from approximately 50kg to almost 280kg. Drag also increased but only by a factor of two with the standard car measuring 100kg of downforce to the UAS car's 230kg.

The UAS rear wing is a fantastic example of how we use the software to aid our design despite our time constraints. By focusing on a small area in isolation, we can more clearly judge how changes will impact our drag and downforce characteristics.

REAR WING

In this instance it was found that adding a 15mm gurney strip to the larger lower rear wing increased the overall downforce by a significant amount ( ≈ 11%). This produces an extra 14kg of effective weight on the rear at 200kph, with only ≈3% increase in total rear wing drag.

We have also been able to generate numerical data using the program. Doing so allowed us to find a number of interesting results.

On straights, the wear wing of the UAS Zed has a tendancy to flex under the downforce load. This change in area has an impact on the overall downforce of the wing.

circuit_battle.jpg

Using CFD analysis we were able to simulate a number of different instances. We simulated a straight wing, one with the top wing flexing to touch the lower and an instance of both flexing to the same degree. We did this at both 200km/h and 100km/h simulating a worst case scenario through high and low speed corners.

As can be seen from the tabulated data this flexing causes a drastic change in the dynamics of the wing. Both downforce and drag are significantly reduced as the wing starts to bend.

graph.jpg

On straights this is beneficial as it has the same effect as the adjustable rear wing systems used in the 2011 formula 1 season, if to a lesser degree, reducing drag so we can achieve a higher top speed.

In low speed areas it is slightly more detrimental, however it should be noted that at these speeds overall downforce is significantly lower and as such flex is reduced causing a corresponding reduction in overall downforce lost.

my take on it is that the red line is the new motor given the red line is less boost. if its the red line it comes on earlier and stronger but doesnt have the top end in it just yet.

its a good signe for an undeveloped engine so far.

Yes, the sudden drop was the wheels spinning on the dyno, too much negative camber with old road tyres and 18inch wheels with no side wall.

  • 3 weeks later...

UPDATE

DSCF0240.JPG

DSCF0243.JPG

DSCF0246.JPG

DSCF0247.JPG

DSCF0248.JPG

DSCF0249.JPG

DSCF0251.JPG

Dry sump tank, Oil system now carries 15 litres of oil. Also electric powersteering pump mounted left rear in the car inside this custom box.

DSCF0254.JPG

DSCF0255.JPG

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • @joshuaho96 Hmm considering the drama you've seen/experienced, have you looked into getting a built complete long motor shipped from Australia?  Considering the AUD is basically monopoly money when compared to the USD, at a glance this seems like a good option?
    • Bloody Skylines, they put you through the bloody wringer! Stick at it! Stunning drag strip BTW! Where is it? Can see part of the name on the slip and probably should just Google it!
    • I mean the other day I had to walk someone through diagnosing why their timing belt was walking off the cam gears. At least one of the issues was a bent tensioner stud. Local mechanics have found runout on the CAS mechanism causing weird failures. I'm also no saint here I've documented some of the things I've had to learn the hard way. Something I discovered recently is that my CA emissions catalytic converters weren't even welded correctly to align the downpipe to the main cat and they tossed the support bracket that goes from the transfer case to the downpipe to support everything there. I spend a lot of time chasing down these decidedly unsexy problems and the net effect is it feels like I never actually get to the original objective (flex fuel, VCAM, oil control, cooling, etc).
    • At times with how you make everything sound, all I imagine Americans doing when they see a gtr is standing there looking at it and bashing it with a gun like how a caveman would with a club and hoping it fixes itself 
    • I think this is just a product of how the US market works for this stuff. Shops are expensive and there's no real way of knowing what kind of results you're going to get, people don't really have the institutional knowledge. I have heard too much at this point to really put faith in anybody "full service" except maybe DSport and they aren't really a full service kind of shop. If you go to the right place I have no doubt they'll get it right for you. Some locals have set it up right but the cost really is nuts and even now they're still fighting issues. And you know I'm a crazy person who thinks things like twin scroll, relatively short low-mount cast headers, PCV recirc to intake, recirculating BOV, right-sized for ~400 whp, MAF load, validating all of that to a standard comparable to OEM test programs, etc are relevant. For what it's worth, multiple local owners at this point have been stuck in a perpetual cycle of blowing a motor -> getting someone to rebuild it -> some missed detail causes the bearings to wipe and spin just outside of break-in mileage or drop valves or some other catastrophe -> cycle repeats. I usually only find out about this because I'm perpetually helping random friends with diagnosing car troubles, Skyline or otherwise. The single turbo stuff if I'm honest is mostly secondary, it just doesn't seem to achieve the numbers in the ~2000-3000 rpm region that I would expect given the results I've seen here or in Motive's videos. I don't really know what we're missing here in the US to be causing this. Lots of people like to emphasize the necessity of finishing the project first and foremost, but I'm not made of money and I can't afford to be trashing a 15k+ USD engine build with any regularity. Or spending my relatively limited garage time these days unable to triangulate problems because too much was changed all at once. Also, even if it isn't a catastrophic failure I would consider spending the cost of single turbo conversion with nothing to show for it to be pretty bad. 
×
×
  • Create New...