Jump to content
SAU Community

Recommended Posts

Hey

Thinking about up grading the front brakes on our M35(when it arrives) to R34 GTT.

I looked in the brake thread but it's all over the place.

So can anyone confirm if the GTT discs and calipers will bolt straight on? I understand the brake line might need some work but that's easy to take care of.

Cheers guys.

Cool. So the r34 gtt caliper uses a larger mounting bolt than r33. I'm assuming the M35 also uses the larger mounting bolt or am I wrong?

If this is correct I shoulnt need the bolt sleeves.

34 GTR front Brembos are definitely 324mm, I will have matching sized disks as the Z33 rear Brembos are 324mm also. (Same as the later BNR34 rears.)

I got the Brembo disks machined yesterday, he had issues cutting them they were so hardened. Grade 8 he said. They required a carbide cutter to face, not bad. :cheers:

296 = R33 GTST and R32 gtr except 2mm thicker.

310 = R34 GTT

324? = R33/34 GTR

this is correct

non brembo r32 gtr is 296x32mm, r33 gts-25t is 296x30

r34 gtt is 310mmx30 and r34 gtr is 324mm (i forget what thickness)

everything r32 and r33 has 12mm bolts up front, r34 gtt and gtr brakes have 14mm bolts up front

on a side note, the 2 pot rears are the same from r32 to r34 :)

i thought 350z calipers etc was the M35 upgrade?

its the better option because you get 324mm rotors if you get the brembos

but brembos always carry a premium price

i thought the rotor hat height was the main difference between R33/34 and 350Z? being that the R34GTR brembos have a height of 53.8mm and 350z brembos a height of 49mm. clearly if you match the caliper to the rotor you should be right but depends on the hubs being the same. so if you fitt R34 brakes to your M35 they will sit in further than standard (better caliper clearance?)

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Good afternoon Team , just a quick update on performance mods  Current Mods list (Installed) HKS - Power Editor (Came with the car) looks to be some kind of boost controller RV37 Skyline 400R (SKYLINE) | FUJITSUBO  - Cat Back  RV37 Skyline 400R (SKYLINE) | FUJITSUBO  - Front Pipe AMS  - INFINITI Q50/Q60 RED ALPHA COLD AIR INTAKE KIT AMS  - Performance Heat Exchanger Intercooler Not Yet AMS Alpha Performance Full Race Down Pipes  - to be installed in May 
    • I'd be installing 2x widebands and using the NB simulation outputs to the ECU.
    • Nah, it's different across different engines and as the years went on. R32 era RB20, and hence also RB26, the TPS SWITCH is the idle command. The variable resistor is only for the TCU, as you say. On R33 era RB25 and onwards (but probably not RB26, as they still used the same basic ECU from the R32 era), the idle command is a voltage output of close to 0.45V from the variable resistor.
    • It's actually one of the worst bits of Nissan nomenclature (also compounded by wiring diagrams when the TCU is incorporated in ECU, or, ECU has a passthru to a standalone TCU).... the gripe ~ they call it the TPS, but with an A/T it's actually a combined unit ...TPS (throttle position switch) + TPS (throttle position sensor).... ..by the looks of it (and considering car is A/T) you have this unit... https://www.amayama.com/en/part/nissan/2262002u11 The connector on the flying lead coming out of the unit, is the TPS (throttle position sensor) ...only the TCU reads this. The connector on the unit body, is the TPS (throttle position switch) ...ECU reads this. It has 3 possible values -- throttle closed (idle control contact), open (both contacts open, ECU controls engine...'run' mode), and WOT (full throttle contact closed, ECU changes mapping). When the throttle is closed (idle control contact), this activates what the patent describes as the 'anti stall system' ~ this has the ECU keep the engine at idling speed, regardless of additional load/variances (alternator load mostly, along with engine temp), and drives the IACV solenoid with PWM signal to adjust the idle air admittance to do this. This is actually a specific ECCS software mode, that only gets utilized when the idle control contact is closed. When you rotate the TPS unit as shown, you're opening the idle control contact, which puts ECCS into 'run' mode (no idle control), which obviously is a non-sequitur without the engine started/running ; if the buzzing is coming from the IACV solenoid, then likely ECCS is freaking out, and trying to raise engine rpm 'any way it can'...so it's likely pulling the valve wide open....this is prolly what's going on there. The signal from the connector on the flying lead coming out of the unit (for the TCU), should be around 0.4volts with the throttle closed (idle position) ~ although this does effect low throttle shift points if set wrong, the primary purpose here is to tell TCU engine is at idle (no throttle demand), and in response lower the A/T line pressure ... this is often described as how much 'creep' you get with shifter in D at idle. The way the TPS unit is setup (physically), ensures the idle control contact closes with a high margin on the TPSensor signal wire, so you can rotate the unit on the adjustment slots, to achieve 0.4v whilst knowing the idle control contact is definitely closed. The IACV solenoid is powered by battery voltage via a fuse, and ground switched (PWM) by the ECU. When I check them, I typically remove the harness plug, feed the solenoid battery voltage and switch it to ground via a 5watt bulb test probe ; thing should click wide open, and idle rpm should increase... ...that said though, if it starts & idles with the TPS unit disconnected, and it still stalls when it gets up to operating temperature, it won't be the IACV because it's unused, which would infer something else is winking out...  
    • In the context of cam 'upgrader' I mean generally people who upgrade headers/cams - not my specific change. I mean it makes sense that if I had a bigger cam, I may get more false lean readings. So if I went smaller, I'd get less false lean readings. To a point where perhaps stock.. I'd have no false lean readings, according to the ECU. But I'm way richer than stock. My bigger than normal cam in the past also was giving false rich leanings. It's rather odd and doesn't add up or pass the pub test. Realistically what I want is the narrowbands to effectively work as closed loop fuel control and keep my AFR around 14.7 on light sections of the map. Which is of course the purpose of narrowband CL fuel control. So if I can change the switch points so the NB's target 14.7 (as read by my WB) then this should be fine. Haven't actually tested to see what the changed switchpoints actually result in - car needs to be in a position it can idle for awhile to do that. I suspect it will be a troublesome 15 min drive home with lots of stalling and way too rich/lean transient nightmare bucking away for that first drive at 2am or whevener it ends up being. Hopefully it's all tune-able. Realistically it should be. This is a very mild cam.
×
×
  • Create New...