Jump to content
SAU Community

Recommended Posts

Hey guys just wondering how well you know your 260pon cams rb26.... To start off all shims are adjusted correctly.

OK well my cams have an aggressive over lap causing a serve low compression reading for example... the piston travels down, inlet valve opens, piston reaches bottom of cylinder and begins to come up and the inlet is still open.

it causes a low comp reading of about 100 and i drop in stock cams and it goes all the way to a strong 150. can anyone shed some light on their overlap?

All cams will cause loss of compression with valves being open during the compression stroke

I.e the cams i got are 252 & 262 @ 0.050" at 10.75:1 static compression ratio dynamic compression ratio is roughly around 8.5:1

Valve over Lap is when the exhaust valve is closing and the intake is opening at the end of the exhaust stroke/ beginning of the intake stroke

Adjusting cam timing via dialing in which should be done with all new cams or on a dyno / series of road tests etc and this will change the valve overlap and can add or take away a percentage of the compression stroke

just had a quick look on the just jap website and they say the pon cams are 260.... yeh i have the adjustable gears does anyone know how many degrease is safe to turn before valves can actually hit piston? and should i turn them clockwise or anti do i turn them bothe in the same direction...?

I had 256 cams and I know people running bigger and they don't seem to have this issue. These cams are setup to be in the optimal position. You shouldn't need to f**k around with cam gears straight off the bat.

I'm fairly sure with the issues you are having you've got one or both cams timed incorrectly, ie. cam pulley is out a tooth.

Check it properly. No offense but you don't seem to have a clue what you are doing so it might pay to have someone that does to check it.

You definitely shouldn't be losing that much compression on such mild cams.

Hey guys just wondering how well you know your 260pon cams rb26.... To start off all shims are adjusted correctly.

OK well my cams have an aggressive over lap causing a serve low compression reading for example... the piston travels down, inlet valve opens, piston reaches bottom of cylinder and begins to come up and the inlet is still open.

it causes a low comp reading of about 100 and i drop in stock cams and it goes all the way to a strong 150. can anyone shed some light on their overlap?

Numbers shown are open, closed and cam centreline.

ATDC = after top.

BTDC = before top.

BBDC = before bottom.

ABDC = After bottom.

ACDC = Shite band much loved by bogans.

Stock cams

Intake 240 degrees 7 BTDC 53 ABDC 113 degrees

Exhaust 236 degrees 63 BBDC 7 BTDC 118 degrees

Tomei Poncam A

Intake 260 degrees 20 BTDC 60 ABDC 110 degrees

Exhaust 252 degrees 61 BBDC 11 ATDC 115 degrees

Tomei Poncam B

Intake 260 degrees 20 BTDC 60 ABDC 110 degrees

Exhaust 260 degrees 65 BBDC 15 ATDC 115 degrees

You can work out the overlap from there - basically the stockers dont overlap and the B's have 35 degrees of it.

Having had them installed then removed I can confirm the Poncam B's take a massive hit on cyl;inder filling at idle.

Edited by djr81
  • Thanks 1

hey thanks for your interest in trying to help, but timing is spot on im tending to lead towards the wrong cams were given to me. might get some other cams as i put standard ones in compression comes back up.

I had 256 cams and I know people running bigger and they don't seem to have this issue. These cams are setup to be in the optimal position. You shouldn't need to f**k around with cam gears straight off the bat.

I'm fairly sure with the issues you are having you've got one or both cams timed incorrectly, ie. cam pulley is out a tooth.

Check it properly. No offense but you don't seem to have a clue what you are doing so it might pay to have someone that does to check it.

You definitely shouldn't be losing that much compression on such mild cams.

I have 10.8mm lift cams 10vc dome piston and 0.130" intake and 0.180" exhaust piston to valve clearance. but i also have +1mm valves and 0.095" ground off the head and the pistons are sitting above the deck 0.005". Minimum piston to valve clearance is 0.080"

And ac/dc were are good band in the day

Thanks mate most useful bit of information good to see some one who really knows what their talking about thumbsup.gif

Numbers shown are open, closed and cam centreline.

ATDC = after top.

BTDC = before top.

BBDC = before bottom.

ABDC = After bottom.

ACDC = Shite band much loved by bogans.

Stock cams

Intake 240 degrees 7 BTDC 53 ABDC 113 degrees

Exhaust 236 degrees 63 BBDC 7 BTDC 118 degrees

Tomei Poncam A

Intake 260 degrees 20 BTDC 60 ABDC 110 degrees

Exhaust 252 degrees 61 BBDC 11 ATDC 115 degrees

Tomei Poncam B

Intake 260 degrees 20 BTDC 60 ABDC 110 degrees

Exhaust 260 degrees 65 BBDC 15 ATDC 115 degrees

You can work out the overlap from there - basically the stockers dont overlap and the B's have 35 degrees of it.

Having had them installed then removed I can confirm the Poncam B's take a massive hit on cyl;inder filling at idle.

i better get out the clay and measure my valve to piston clearance in the cylinder whistling.gif hehe.

I have 10.8mm lift cams 10vc dome piston and 0.130" intake and 0.180" exhaust piston to valve clearance. but i also have +1mm valves and 0.095" ground off the head and the pistons are sitting above the deck 0.005". Minimum piston to valve clearance is 0.080"

And ac/dc were are good band in the day

I think the thing to realise is that opening and closing , valve timing , is related to how the cams are timed when fitted . You can have a pair of std cams set to have a lot of overlap or long cams with SFA overlap .

Its how the cams are set in relation to each other and where the pistons are in the cycle .

If someone with the same cams as you have can tell you where to set their timing and you can degree the crank with the cams their should not be any dramas , always assuming your engine is in good nick .

A .

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • I believe there was a similar one posted by @duggyphresh. They were re-routing their battery positive cable in the way I am also trying to achieve. Sorry, I’m new to this forum, so was a bit late to the party by a few months and so reignited the old thread, as I wanted to know how they got on with doing it.
    • Wasn't there a thread on this very subject just a few weeks ago?
    • Hi all! Looking to relocate the battery to the trunk of an R34 GTT. I want to do it using as many stock GTR components as I can (including the harness protectors from the 34 GTR that run underneath along the chassis to the engine bay). So far I’ve purchased the battery tray from a 33 GTR, as the captive weld nuts are already there just asking to be used. There is also the slight issue of now having to relocate the ABS/TC/Fuel Pump Control ECU, which in GTT’s sits right above where the battery will then sit on the tray. Has anyone already achieved this, and if you have any pics that you wouldn’t mind sharing? It would be great to see how others have done it and where you put them, as there are countless holes in the parcel shelf panel to potentially use. Just trying to get some ideas bounced around, and to help uncover any potential problems I may encounter by  my choice of location. TIA for any help!
    • Brand was ard.   I also threw a brand new battery at it and beefed up the wire from the alternator to battery and added an extra earthing point from the battery 
    • Evening all,       I'm replacing some bolts on my RB25 with probolt Australia bolts.       Does anyone know the following, m5 m6 etc 10mm 20mm etc       Coil cover   Cam covers   Plazamaman fuel rail   Front cover (timing cover)   Etc   Any help would be awesome   Or any lists anywhere
×
×
  • Create New...