Jump to content
SAU Community

Recommended Posts

R33GTST ->

I'm wondering if and in what direction a pre-load should/can be applied

to a rear strut brace? The brace must be adjustable for a reason.

I'm not talking about inches but just put the brace under minimal tension so there is no 'slack'

Thanks ..

Link to comment
https://www.sau.com.au/forums/topic/411365-rear-strute-brace-preload/
Share on other sites

  • 2 weeks later...

I always like a little bit of outter preload, if there is 0 preload (this is all knocked up in my head, no proof) the rear strut towers will flex until it is loaded up on the bar, i.e. this being they move towards each other under heavy suspension load.

Like I said, there's no proof for that, but that's how I see it in my head

Define "pre-load". The way I see it, unless the bar will deflect, and unless the joints at either end have slop, the bar can be considered to be incompressible. On that basis, if it is set up so that there is no slop in it at all, but no actual force being applied outwards, then there should be no initial "loading up on the bar" phase. As soon as force is applied to the bar at one end by the strut tower, then the bar will transfer that load to the other strut tower.

If the bar will deflect up/down, then it isn't strong enough and won't do much. If there is slop in the joints at either end, then the maximum movement that the strut tower can make before loading the bar and hence the opposite tower is the amount of slop. So if there is an adjuster on the bar, you just wind the slop out of it.

Of course, "winding the slop out of it" assumes that the towers are only ever forced towards each other by suspension forces. If the suspension forces can in fact spread the towers apart, then the slop will still be there, and the correct solution is to make sure that there is no slop at all. And if these spreading forces do exist, then preload would be a bad thing.

Everything has a dead zone, strut bars are no different. Even metal compresses and flexes in varying ammounts depending on load, especially the bolts.

Close to that dead zone, when load is applied in either direction that load initally meets less resistance with the frist few minute movements comapred to past these minute movements. So if you pre load the bar you are moving away from this dead zone and any load will meet a higher initial resistance in one direction but not the other.

Somebody will have a tougher time beinding a stick of bamoo if its already being held beint in one direction that another. The downside is they will have a much easier time going in the other direction.

Now whether you want the strut bar to strech or pull I dont know. Maybe this is why its best not to preload the bar. You dont know which direction is beneficial. pesonally I would pull it together SLIGHTLY, i.e shotern in a littltle.

Not much is needed as the dead zone is small by the way.

What we need is a volunter to sit in the back of (my Stagea would be easier than) a Skyline with a dial gauge attached to the end of a strut bar which is only bolted at the other end and observe the range and direction of movement relative to the opposite strut tower!

Stagea possibly not a good representative for a Skyline seeing as any wagon should have lots more body flex. A big square cavity is always going to be more flexy than a smaller space that is crossed by a rear deck and seat back steelwork. But a valid idea nonetheless.

In reality, what you actually want instead of a dial gauge though, is a strain gauge pressed in between the end of a (strut) bar and the tower, so you can measure how much force is involved.

Well,

I tightened the braces rear and front to eliminate the dead zone.

By tightening I mean not insane amounts of force but merely about an eights to a quarter turn.

When you 'stretch' as opposed to tighten the braces slightly flex, that's why I tightened them.

I have a b-pillar 'lock bar' that sits between the two b-pillars and pushes outwards creating chassis rigidness, when I put this in I tightened the sh1t out of it, and found that this made quite a noticeable difference to the handling.

For my front strut brace, I jacked the front of my car up (to take the weight off the suspension struts), and then tightened the strut brace quite a bit (not a stupid amount, but enough to apply a decent amount of pressure on the struts). I found that this seemed to make the handling feel more 'stiffer' and responsive.

Wasn't sure if the above would do anything positive but gave it a go and it seemed to help!

I'm trying to figure out if one has to jack up the car when installing these braces.

So when you jack the car up I think the chassis flexes downwards (?) unless you jack it up on both sides and support it evenly.

From factory I could imagine that the geometry of the car is set with the car standing on its own feet, and that would seem like the natural

position to fit the braces (?)

But I am just theorizing ,,,,

Any thoughts on this ..?

I have a b-pillar 'lock bar' that sits between the two b-pillars and pushes outwards creating chassis rigidness, when I put this in I tightened the sh1t out of it, and found that this made quite a noticeable difference to the handling.

For my front strut brace, I jacked the front of my car up (to take the weight off the suspension struts), and then tightened the strut brace quite a bit (not a stupid amount, but enough to apply a decent amount of pressure on the struts). I found that this seemed to make the handling feel more 'stiffer' and responsive.

Wasn't sure if the above would do anything positive but gave it a go and it seemed to help!

I'm trying to figure out if one has to jack up the car when installing these braces.

So when you jack the car up I think the chassis flexes downwards (?) unless you jack it up on both sides and support it evenly.

From factory I could imagine that the geometry of the car is set with the car standing on its own feet, and that would seem like the natural

position to fit the braces (?)

But I am just theorizing ,,,,

Any thoughts on this ..?

That sounds right, so when jacking up the car the suspension struts should widen slightly as the weight of the car is not being placed on them, which in turn should allow the strut brace to be expanded outwards more. Whether or not this should be done or is necessary, I'm not sure, but I did it anyway (about a year and a half ago), and it certainly doesn't seem to have done any damage.

I jacked the car up by the centre point just back from the centre of your front bumper, this was for the front strut brace. I believe it would work the same if you jack the car up by the diff, which is what I jack it up by when changing rear suspension, but I don't have a rear strut brace.

Let me know if the rear strut makes much difference!

Its probably worth mentioning that rear strut braces OFFER NO BENEFIT AT ALL on Skylines. The upper and lower control arms connect to the rear subframe, not the body of the car. The arms provide all the lateral control. The upper mount of the shock doesn't have any lateral force on it, and a strut bar only provides resistance to lateral force.

Front suspension is different because the mount for the upper arm is connected to the body of the car. Not right at the shock tower, but close. So it reduces the flex of the body and therefore of the upper arm mount.

Hi,

I am not that familiar with the suspension and will have to think about what you wrote.

However (and I am not imagining this) ->

After In had the rear brace installed the car is now very willingly going into a controlled oversteer/drift.

This was not the case before.

Also the rear feels less wobbly.

(I am still on the standard suspension)

Its probably worth mentioning that rear strut braces OFFER NO BENEFIT AT ALL on Skylines. The upper and lower control arms connect to the rear subframe, not the body of the car. The arms provide all the lateral control. The upper mount of the shock doesn't have any lateral force on it, and a strut bar only provides resistance to lateral force.

Front suspension is different because the mount for the upper arm is connected to the body of the car. Not right at the shock tower, but close. So it reduces the flex of the body and therefore of the upper arm mount.

Edited by Torques

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Update: Tunehouse looked into the problem and identified a wiring issue between the camera unit and the connector. They managed to get it working , but did warn me at some point it will stop working again. From their perspective it is unserviceable and will need replacement. They did some research and found that the new replacement camera would be Approx $1400 supply only (their fitting cost would be $190) . They did provide the part number (28442-JL05B) and a quick google of the part number shows that these are rather expensive brand new (seemingly no longer in manufacture) for the places that still have them in stock, with the used option potentially presenting  the same issue down the track at some unknown point. They are happy for me to supply the part so that they can fit it. Decisions, decisions... I can definitely recommend Tunehouse (thankyou Vee37!). Cost for the diagnosis was as quoted  ($190) , car was ready on time and communication was top notch. Their workshop is super clean and modern, and there was plenty of car candy parked out the front on the day I went.   Would definitely go back.   
    • to fix the voltage drop issue I swapped out the old 150amp alternator which turns out is a brand known for having issues and replaced it with the black 180amp alternator beside it 
    • For anyone interested, the Way Back Machine has that Japanese website archived with pictures, etc: https://web.archive.org/web/20051023225805fw_/http://www.a31cefiro.com/air_con.htm "Simply swapping the wiring of the harness will not allow it to function properly. For the outdoor air sensor and sunlight sensor, disconnect the wiring connected to CN1-11 of the air conditioning harness from the harness and connect the sensor side wiring to earth. For the indoor air sensor, disconnect the wiring connected to CN2-3 of the air conditioning harness from the harness and connect the sensor side wiring to earth. The connector PIN numbers listed here are the genuine A31 PIN numbers. To avoid incorrect wiring, check with a tester before wiring. Also, disconnect the wiring in a location close to the sensor. The disconnected harness side wiring will not be used, so be sure to insulate it." Wish someone sold a conversion harness to just plug-and-play a Kouki 180sx digital climate control into C33/A31. I'm decent with wiring but feeling kinda lazy about taking this on. Edit: Did some more digging and found a helpful Minkara blog post about the conversion as well: https://minkara.carview.co.jp/userid/1831116/car/1360568/2284209/note.aspx "After installation is complete or the battery is replaced, you need to go into self-diagnosis mode and set the internal air recirculation. The way to do it is to "hold OFF with the key on for more than 5 seconds, set the number to 5, then press 卍→C." ↑↑↑It probably won't make sense unless you actually try it (・∀・)." Lol wtf
    • Maybe SAUNSW could see howany members would do a motorkhana day if Schofield's is still available for a reasonable price...
    • Skip the concrete, we just need to smooth a field. Mark knows how to drive a grader Duncan   I reckon 100x100 flat area for skid pan style, and then some sort tracks for rally... Duncan's already got a rally car on the premises to...
×
×
  • Create New...