Jump to content
SAU Community

Recommended Posts

Hey guys, ive got a question I couldn't specifically find the answer to.

Is toe affected when adjusting rear camber on an R33 GTST, using adjustable rear camber arms (upper arms), like these? >>

308-S14%20R33%20Rear%20Camber%20-%20Smalhardrace-rear-UCA-s14s15r33r34c34c35.-pi

If it is affected, how much would it change vs camber?

Does that makes sense?

ie. I adjusted the rear camber myself, adding about 1 degree positive. From my measurements & calculations, around -1.8 deg >> to -0.8 deg. (possibly off, but moved + towards zero some amount)

18 inch wheels, so lip to lip, rim height measures 495mm.

Cheers

Is toe affected when adjusting rear camber on an R33 GTST, using adjustable rear camber arms (upper arms), like these? >>

As far as I know, yes. Camber and toe are normally adjusted together when doing an alignment. I'd suggest dropping by at a wheel joint and getting them to measure it for you?

It will almost certainly affect toe, and using my logic: adding negative camber will increase toe-in, subtracting negative camber (as you've done) will increase toe-out.

Did you adjust both upper arms for camber?

The change in toe would be minimal but you'd want to verify it by taking it to a shop.

Edited by colourclassic

It will almost certainly affect toe, and using my logic: adding negative camber will increase toe-in, subtracting negative camber (as you've done) will increase toe-out.

Did you adjust both upper arms for camber?

The change in toe would be minimal but you'd want to verify it by taking it to a shop.

I would have said the exact opposite. Assumnig you do not change the lengths of the radius/traction arms, then shortening the upper arms (adding neg camber) will effectively push the front of the wheel outward. This is because the traction arm stops the front of the upright leaning inward with the rest of it as the neg camber is increased.

Logically, in order to increase neg camber without causing toe out, you would also need to have adjustable traction arms that you could shorten at the same time.

As to how much.....well, toe is measured in mm and camber in degrees, so it would be hard to come up with a relationship that made sense without going and measuring everything carefully. But I would estimate that because the traction arms are about 45° to the upper arm, then you'd get about 1/sqrt(2) change in toe angle with each change in camber angle. Or about 70% of the camber angle change might turn up as toe change. Might be a bit less, depends on how close to 45° that arm is, and also the influence of the tie rods/toe rods at the rear. What might actually happen is that the traction arm bushes end up soaking up a lot of the force and so you don't actually see so much angle change but you do increase the binding load in the traction arm bushes.

I would have said the exact opposite. Assumnig you do not change the lengths of the radius/traction arms, then shortening the upper arms (adding neg camber) will effectively push the front of the wheel outward. This is because the traction arm stops the front of the upright leaning inward with the rest of it as the neg camber is increased.

Logically, in order to increase neg camber without causing toe out, you would also need to have adjustable traction arms that you could shorten at the same time.

As to how much.....well, toe is measured in mm and camber in degrees, so it would be hard to come up with a relationship that made sense without going and measuring everything carefully. But I would estimate that because the traction arms are about 45° to the upper arm, then you'd get about 1/sqrt(2) change in toe angle with each change in camber angle. Or about 70% of the camber angle change might turn up as toe change. Might be a bit less, depends on how close to 45° that arm is, and also the influence of the tie rods/toe rods at the rear. What might actually happen is that the traction arm bushes end up soaking up a lot of the force and so you don't actually see so much angle change but you do increase the binding load in the traction arm bushes.

Good point, I was assuming you adjust the traction arm with the upper arm when adjusting camber to compensate for rake/caster changes? If that was the case then the HICAS linkages would dictate toe. If in fact you only adjust the upper arm, then your theory would be correct. Any suspension experts out there?

Edit: It looked like he does have adjustable traction arms, hence my logic stated above.

Edited by colourclassic

Yes, i thought as much re: toe being affected one way or the other..

Just wasnt sure.

It will almost certainly affect toe, and using my logic: adding negative camber will increase toe-in, subtracting negative camber (as you've done) will increase toe-out.

Did you adjust both upper arms for camber?

The change in toe would be minimal but you'd want to verify it by taking it to a shop.

Do you mean both sides (driver and passenger) equally? Yes.

I adjusted both sides to about 7-8mm below zero camber. (495mm / 8mm) x (INV)tan = 0.89 degrees.

Of course i did this at home, and didnt use precision measuring tools, but it looks good to me.

However, toe is much harder to measure and gestimate, so I should prob get this looked at anyway.

Do you mean both sides (driver and passenger) equally? Yes.

I adjusted both sides to about 7-8mm below zero camber. (495mm / 8mm) x (INV)tan = 0.89 degrees.

Of course i did this at home, and didnt use precision measuring tools, but it looks good to me.

However, toe is much harder to measure and gestimate, so I should prob get this looked at anyway.

No, I meant did you adjust both the 'camber' and radius/traction arms on both sides? It looks like both your upper arms are adjustable on each side. The Nissan multi-link is a pretty complex setup, and adjusting just one parameter changes the whole suspension dynamic; toe, caster, camber etc.

Edited by colourclassic

no thats not a photo of my car. Just showing which type of adjustable arms i was using.

i only have the one that bends around the coilover. as in the 2nd pic.

i dont think there is any adjustment in the other arm in stock form.

ive had my camber adjusted a while ago, and the guy had it spot on. but since then it's been lowered a little more and it was bugging me, hence the home adjustment.

no thats not a photo of my car. Just showing which type of adjustable arms i was using.

i only have the one that bends around the coilover. as in the 2nd pic.

i dont think there is any adjustment in the other arm in stock form.

ive had my camber adjusted a while ago, and the guy had it spot on. but since then it's been lowered a little more and it was bugging me, hence the home adjustment.

Ah! That explains it then. If you only have adjustable camber arms, and non adjustable traction arms, then GTSboy is right, your toe has increased inwards.

yeah but I'm pretty sure you can rectify that by adjusting the hicas (lock bar) rods.

also, i'm pretty sure i can feel more rolling resistance now. so thats what made me think maybe toe was not zero anymore.

  • 2 weeks later...

FYI for future searches.

I had the rear alignment done.

My calculations were a little out. I had -1 degree on the passenger side, -1.2 degree on the drivers side.

The toe had hardly been affected. Was sitting on zero. I suspect it was previously just under zero.

So i guess adding positive camber = increase in toe out??

Anyway, new rear alignment is -0.8 deg, 0 toe. I think that's reasonable for street driving.

Cheers for the help guys!

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Convert to dual filament bulb   FWIW, it will look odd - I dare say a bit dumb as it looks like your flasher relay has shit the bed.
    • If the RB20 box in the car is a push clutch, then yes, you will need to deal with the pull clutch on the turbo box. You either buy a pull clutch and don't use the old one, or you do the things needed to convert the turbo box's clutch arrangement over to push. Which is a bit of a f**karound. "Making" a custom tailshaft is the easy part. But you will need to source the front clip yoke - the bit that goes into the output of the gearbox. These are not as easy to find. They are out there, but they don't grow on trees the way that they used to.
    • Indicator bulbs are way too bright to use as a "corner marker" (we call them parking lights too). Sure. Go ahead and do it. But realise that you wil need to come up with all your own wiring to do it, as no-one will have a standard howto worked out for Skylines. It's just a matter of abandoning everything that Nissan have done and starting from scratch. You'd probably be better off retrofitting tailght/brakelight globe bases into the front indicator housings and using the taillight circuit for your corner marker and the brake light as the indicator. You'd need to work out how to kill the marker circuit while the indicator is flashing, otherwise it won't flash on-off, just bright-less bright.
    • Hi. A little bit of an update. It maybe(hope not) looks like i would need a new tranny(it would be "maybe" a cheaper or better option anyway) So i need some info. I know i need a different propshaft(i can make custom one) LSD is not a problem cuz the engine will be still(for now) N/A RB20. So if i buy RB25DET NEO tranny...is there something else i need? I read something about push/pull type but i do not know if i need to "change" something or i can just plug n play onto my engine a go? Thanks for the advice  
    • Good morning all, Bit of a random question but figured I’d finally throw it out after wondering for a long while. Before I start, I'm hoping to do this purely out of personal preference. I think it would look better at night, and don't mind at all spending a few hours and dollars to get it done. I've copied this from a non-Skyline specific forum, so I apologize for the explanation of our headlight switch setup that we all know. Here we go: Zero lights (switch off) Parking lights (switch position 1) being a rectangular marker on the outside of the housing, my low beam being the projector in the centre (position 2), and a high beam triggered by my turn signal stalk. Most North American cars I’ve owned of this era have power to the amber corner (turning indicator) light as part of the first switch (parking lights). I’d love to have these amber corners receive power when the headlights and parking lights are on (headlight switch), yet still blink when using the turn signal which is of course a separate switch. Hopefully I’ve explained my question correctly. Is anyone aware of a way in which I might be able to achieve this? Thanks in advance
×
×
  • Create New...