Jump to content
SAU Community

Recommended Posts

Very interesting. Wonder how a 51R/62R SPL would run on this kind of engine setup.

It needs to be done as part of the R&D, but it won't be on this engine. Perhaps something for the v3.1 engine.

Keen to see results as your capacity, turbo choice and head setup are very similar to mine.

It should lay down your 500kw 25psi estimate easily based on what I've seen with my engine so far. The 6466 is a hell of a turbo.

  • Like 1

Can you please go into more detail regarding the decision to use a "dual gasket" setup between the spacer and head? Also, I'm curious why you chose that piston skirt design and did you consider unshrouding the valves in the head?

To deal with the thermal expansion differences between the sleeve and spacer plate I felt there had to be two highly compressible gaskets. The copper gasket does not compress at all, so it is essentially just a perfectly flat sealing surface, just like the cylinder head. So this presented no issues at all with regards to sealing, from the top of the block to the bottom of the head gasket.

I am not entirely happy with having to use a silicon based sealant on top of the copper gasket to seal it to the head (threebond 1211), but this is for the most part normal practice with copper head gaskets. Alternatives being hylomar or copper spray.

As I tend to do, I have since designed a better way around this issue. The V3.1 engine when it happens will have a copper inner gasket sealing the combustion chambers, and the same type of fiberous gasket sealing coolant and oil outside the combustion chambers. The challenge is making it all stay still when it is assembled.

The piston design was handled by Nitto. I just told them the crown height I wanted and they took care of the rest. Running the oil ring over the gudgeon pin is a common method used for custom stroker pistons. The core piston forging they used is still an RB26 one.

Yes I could have opened up the chambers a little more. But also keep in mind that this is a prototype engine, and I am reluctant to modify a Tomei head in such a manner that it might become unsuitable for use on another block.

Edited by GTRNUR

The plates are machined from 6160 Alloy.

I investigated using a stock gasket as from experience it did work well on the other engine. However there are a couple of issues.

The first is that the stock gaskets are metal re-enforced. So to reliably cut the gasket firing rings out it would need to be put in a jig and then laser or waterjet cut. For the cost of doing that I have been able to have custom gaskets made that perfectly match the dowel positions and the spacer plate, with a far higher degree of accuracy than a stock gasket fits a block.

The second issue is that the compressability and recovery data for a stock gasket is not exactly published anywhere. So to produce that data myself, I torqued 3 different gaskets up between the spacer plates to 80-ft to measure the compressability. Not only were they different in compression (by about 0.05mm), they did not compress evenly due to the seals built into it. (factor in that my spacer plate does not have a compression area around the firing rings, which would otherwise stabilise gasket compression in a closed deck stock engine).

The gasket material I have used is capable of handling ludicrous pressures (80 bar+), and has published compression and recovery data. I performed compression and recovery thickness tests on the gaskets I made too, so I could predict how they will perform in an engine.

Edited by GTRNUR

any reason why you blocked off the cooling passages on the intake side?

any reason the exhaust side cooling passages aren't sealed all around by the fiber gasket?

thanks for the thread by the way. i think people underestimate how much time it takes to make a build thread.

any reason why you blocked off the cooling passages on the intake side?

any reason the exhaust side cooling passages aren't sealed all around by the fiber gasket?

thanks for the thread by the way. i think people underestimate how much time it takes to make a build thread.

I'm not sure what you mean by blocked cooling passages on the intake side. Simply put, they aren't.

Have a look at the spacer plate again. From its under side you can see the coolant galleries on the intake and exhaust side intersect with a coolant gallery that allows coolant around the whole top of the sleeve (minus about 3mm at the top).

Edited by GTRNUR

Ah, I see it now. still, i'm a little worried about the seal around the coolant passages.

I suppose the fact that he has "published compression and recovery" data should mean it will be fine. My first thought was that through multiple heating and compression cycles the gasket may lose some of its tension and create a leak.

What clutch is behind this?

An Exeedy Carbon D twin plate.

Ah, I see it now. still, i'm a little worried about the seal around the coolant passages.

I still don't see your reasoning.

There is about 10mm of gasket everywhere between all coolant and oil passages. When you factor in that the gasket material is tested to 8 bar with nitrogen gas, there is no way it will ever blow a coolant leak into an oil return, or coolant to the outside world. Coolant system pressure is at most 1.4 bar, so the seal is massively over rated for the task I am asking it to perform.

Gasket compression and recovery has been measured during the trial assemblies of the engine. Target gasket compression for the spacer gaskets is achieved at a little under 2/3 of head stud final torque. The remaining tension holding the head to the block focuses all compression forces on the copper gasket and O-rings. Similar O-ring/receiver copper head gaskets have been proven to hold the head on a 1500+hp RD28/RB26 hybrids.

Consider the surface area look of the gasket that is actually compressed for form a seal, clamping pressure per square inch is higher than with a conventional closed deck engine.

In short, the seal that the whole assembly achieves far exceeds that which standard head gasket could ever hold.

I love this idea and that people are firing questions and you are on the ball and have it covered, it shows exactly how much thought and prep has gone into this.

Two thumbs up

  • Like 1
  • 1 month later...

Hi Ian,

What was the starting deck height for the RB26?

Did you also use std length SR20 Rods at 136.3mm?

Great build thread too, really enjoyable to see this work being done to a 26 for us GTR guys.

Look forward to seeing more

Best Regards

Nigel

Hi Nigel,

This engine is configured with the sleeves 20.8mm taller than the standard 24U deck height. Add 1.2mm for the head gasket.

Yes the rods are standard SR20DET length, 136.3mm.

I finally completed the engine breather setup last Saturday (after waiting 4 weeks for hose and fittings), and got to take the car for a shake down drive. All went very well except that some custom welding that was done to the radiator had a small pinhole leak.

The engine already feels very different to drive than the previous motor. It drinks a lot more fuel for any load point too. Very revvy off idle, almost like an RB26 with a stupidly light flywheel. Except that it doesn't fall on its head when you let up the clutch. It just goes.

Keeping the revs below 4000 for the next 1000kms. I'm hoping to do some k's over Christmas.

Here's a picture showing the breather line setup.

When the engine is running, the flow of gas is from the catch can, through the breather lines to the cam covers, down to the sump, out the rear turbo train, and through a baffeled expansion chamber (mounted on the side of the engine block).

From the expansion chamber, an AN16 breather line connects to a second baffelled catch can, which then connects to a venturi angled connection on the side of the intake just before the turbo. There are restrictors to limit airflow through the hoses to the cam covers.

My hopes is that this will essentially vacuum oil from the head when the engine us operating under boost, as well as pull the engine into a light vacuum in the sump.

post-26553-0-49309000-1387186586_thumb.jpg

  • Like 1

The engine already feels very different to drive than the previous motor. It drinks a lot more fuel for any load point too. Very revvy off idle, almost like an RB26 with a stupidly light flywheel. Except that it doesn't fall on its head when you let up the clutch. .

Impossible. It can't rev. Long stroke and all :P

Sounds awesome! How long until the wick gets turned up?

I'll try put a camera in the car for the next drive I do. Even keeping the revs below 4000 its a load of fun. Although I admit that I was having GTR withdrawals too. The new 575 RSR tyres are loads of fun on roundabouts. Grip, grip and more grip, and no understeer!



It could be a while till I can put the necessary K's on it. Between the road works happening everywhere in Cairns, and now that its started raining there isn't a lot of good drive opportunities in any direction. The worst example is 6 lots of traffic stops on a near by range to the tablelands.



New overpass construction and the start of the freeway style roads up here is happening too. Albeit with Cairns level quality. Bumpy as, and pot holes appearing in the new hot mix surface after 2 days of rain.


Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Latest Posts

    • Thanks, I removed the fuse and the relay from the car and made my own circuit with them to test them with a test bulb.  I will look for the wiring diagram and go from there.
    • Jdm DC2R is also nice for a FF car compared to the regular hatches of the time.
    • Now that the break-in period for both clutch and transmission is nearly over I'd like to give some tips before I forget about everything that happened, also for anyone searching up how to do this job in the future: You will need at least 6 ton jack stands at full extension. I would go as far as to say maybe consider 12 ton jack stands because the height of the transmission + the Harbor Freight hydraulic platform-style transmission jack was enough that it was an absolute PITA getting the transmission out from under the car and back in. The top edge of the bellhousing wants to contact the subframe and oil pan and if you're doing this on the floor forget about trying to lift this transmission off the ground and onto a transmission jack from under the car. Also do not try to use a scissor jack transmission lift. You have to rotate the damn thing in-place on the transmission jack which is hard enough with an adjustable platform and a transmission cradle that will mostly keep the transmission from rolling off the jack but on a scissor lift with a tiny non-adjustable platform? Forget it. Use penetrating oil on the driveshaft bolts. I highly recommend getting a thin 6 point combination (box end + open end) wrench for both the rear driveshaft and front driveshaft and a wrench extension. These bolts are on tight with very little space to work with and those two things together made a massive difference. Even a high torque impact wrench is just the wrong tool for the job here and didn't do what I needed it to do. If your starter bolts aren't seized in place for whatever reason you can in fact snake in a 3/8 inch ratchet + 6 point standard chrome socket up in there and "just" remove the bolts for the starter. Or at least I could. It is entirely by feel, you can barely fit it in, you can barely turn the stupid ratchet, but it is possible. Pull the front pipe/downpipe before you attempt to remove the transmission. In theory you don't have to, in practice just do it.  When pulling the transmission on the way out you don't have to undo all the bolts holding the rear driveshaft to the chassis like the center support bearing and the rear tunnel reinforcement bar but putting the transmission back in I highly recommend doing this because it will let you raise the transmission without constantly dealing with the driveshaft interfering in one way or another. I undid the bottom of the engine mount but I honestly don't know that it helped anything. If you do this make sure you put a towel on the back of the valve cover to keep the engine from smashing all the pipes on the firewall. Once the transmission has been pulled back far enough to clear the dowels you need to twist it in place clockwise if you're sitting behind the transmission. This will rotate the starter down towards the ground. The starter bump seems like it might clear if you twist the transmission the other way but it definitely won't. I have scraped the shit out of my transmission tunnel trying so learn from my mistake. You will need a center punch and an appropriate size drill bit and screw to pull the rear main seal. Then use vice grips and preferably a slide hammer attachment for those vice grips to yank the seal out. Do not let the drill or screw contact any part of the crank and clean the engine carefully after removing the seal to avoid getting metal fragments into the engine. I used a Slide Hammer and Bearing Puller Set, 5 Piece from Harbor Freight to pull the old pilot bearing. The "wet paper towel" trick sucked and just got dirty clutch water everywhere. Buy the tool or borrow it from a friend and save yourself the pain. It comes right out. Mine was very worn compared to the new one and it was starting to show cracks. Soak it in engine oil for a day in case yours has lost all of the oil to the plastic bag it comes in. You may be tempted to get the Nismo aftermarket pilot bearing but local mechanics have told me that they fail prematurely and if they do fail they do far more damage than a failed OEM pilot bushing. I mentioned this before but the Super Coppermix Twin clutch friction disks are in fact directional. The subtle coning of the fingers in both cases should be facing towards the center of the hub. So the coning on the rearmost disk closest to the pressure plate should go towards the engine, and the one closest to the flywheel should be flipped the other way. Otherwise when you torque down the pressure plate it will be warped and if you attempt to drive it like this it will make a very nasty grinding noise. Also, there is in fact an orientation to the washers for the pressure plate if you don't want to damage the anodizing. Rounded side of the washer faces the pressure plate. The flat side faces the bolt head. Pulling the transmission from the transfer case you need to be extremely careful with the shift cover plate. This part is discontinued. Try your best to avoid damaging the mating surfaces or breaking the pry points. I used a dead blow rubber hammer after removing the bolts to smack it sideways to slide it off the RTV the previous mechanic applied. I recommend using gasket dressing on the OEM paper gasket to try and keep the ATF from leaking out of that surface which seems to be a perpetual problem. Undoing the shifter rod end is an absolute PITA. Get a set of roll pin punches. Those are mandatory for this. Also I strongly, strongly recommend getting a palm nailer that will fit your roll pin punch. Also, put a clean (emphasis on clean) towel wrapped around the back end of the roll pin to keep it from shooting into the transfer case so you can spend a good hour or two with a magnet on a stick getting it out. Do not damage the shifter rod end either because those are discontinued as well. Do not use aftermarket flywheel bolts. Or if you do, make sure they are exactly the same dimensions as OEM before you go to install them. I have seen people mention that they got the wrong bolts and it meant having to do the job again. High torque impact wrench makes removal easy. I used some combination of a pry bar and flathead screwdriver to keep the flywheel from turning but consider just buying a proper flywheel lock instead. Just buy the OS Giken clutch alignment tool from RHDJapan. I hated the plastic alignment tool and you will never be confident this thing will work as intended. Don't forget to install the Nismo provided clutch fork boot. Otherwise it will make unearthly noises when you press the clutch pedal as it says on the little installation sheet in Japanese. Also, on both initial disassembly and assembly you must follow torque sequence for the pressure plate bolts. For some reason the Nismo directions tell you to put in the smaller 3 bolts last. I would not do this. Fully insert and thread those bolts to the end first, then tighten the other larger pressure plate bolts according to torque sequence. Then at the end you can also torque these 3 smaller bolts. Doing it the other way can cause these bolts to bind and the whole thing won't fit as it should. Hope this helps someone out there.
×
×
  • Create New...