Jump to content
SAU Community

Recommended Posts

Hey all, just wondering if anyone has ever changed the flange on an old HKS RB20/25 low mount manifold I've got one with a T3 divided flange but I want to run a turbo with a T4 divided inlet flange.

Does anyone know if it’s possible or advisable to weld a T4 divided flange onto these manifolds?

Or is it easier to just sell the manifold and get a whole new manifold such as a 6boost?

Link to comment
https://www.sau.com.au/forums/topic/440041-hks-low-mount-flange-change/
Share on other sites

Ive done pretty much that to an rb30 manifold years ago. As it is cast, it needs to be welded correctly or it will crack later (preheat, controlled cooling etc)

If you take it to a reputable welder it would be no worries. And not cost much.

Does it matter if the flange couldn't be ported out all the way to the full T4 size? Does it need to perfectly match the turbine inlet or do I lose much if it doesn't?

Just asking cos I think the edges of the openings would come closer to overlapping the existing T3 stud holes if they're ported out to the full T4 size.

If the manifold port is smaller than the exhaust housing inlet, provided it's not massively smaller it will still be OK. It's called an anti-reversion step (when it it occurs at the head face!) What it will do is locally make the gas speed higher with a small region or turbulence downstream the step, but it shouldn't be too ugly and should cost you power unless you are trying to work the turbo all the way up to the limit of what the exhaust housing can flow.

Agreed, 6boost actually makes this into his T3 flange design to improve the gas speed into the turbo, apparently keeps the response loss to a minimum. It's still a much larger opening than the nozzle of the turbo, so it won't be much of a restriction.

If the manifold port is smaller than the exhaust housing inlet, provided it's not massively smaller, it will still be OK. It's called an anti-reversion step (when it it occurs at the head face!). What it will do is locally make the gas speed higher with a small region of turbulence downstream the step, but it shouldn't be too ugly and shouldn't cost you power unless you are trying to work the turbo all the way up to the limit of what the exhaust housing can flow.

Good grief. Just read my post which can't be edited now and saw all the typos that I hate from other people in it. So I fixed them here so I don't look like an illiterate moron.

Most of the old HKS cast low mount mani's I've had or seen were all T4 flange, and have had the T3 bolt pattern drilled and tapped into the flange face... there is f-all difference in the actual 'hole' between T3 and T4... nothing that can't be sorted out with a die grinder anyway.

So if you have a manifold with a T3 flange (is it cracked?), I can't see why you wouldn't be able to drill and tap a T4 flange bolt hols into it.

OR... swap it for one with a T4 flange already?

... The other thing is that some turbo's just don't fitt on this manifold on and engine with the engine mounts on. I doubt the big ass comp housing on the BW turbo's will fit.

Just out of interest, is it cracked through the divider? every manifold I have seen is or has been cracked.

I don't think there's any way to hide a turbo of that size so probably not worthwhile worrying about a manifold that looks even vaguely "production" .

If you can live with a less exotic but more compact dryer Garrett do T4 TS turbine housings for the smaller and medium sized GT BB turbos .

Might want to dummy it up first. I've had a HKS low mount manifold that came with a TA45 turbocharger. its a tight fit, only few mms from hitting the engine mount. If that is the case then you might want to change the turbine housing's entry flange then bolting on an adaptor in between.

The divider doesn't look like it's cracked.

Is the fitment issue because of height or width?

GTSBoy, thanks - so a lip of 2 - 3 mm would be ok?

2-3mm is probably alright at the lower end of that range and getting a bit excessive at the upper end of the range. If you apply a little die grinder action you can improve that most of the way around.

If you're worried about the old T3 stud holes, then perhaps you could/should weld them up when getting the T4 holes put in. If you didn't want to do that, you just don't die grind too close to those and open up the majority of the rest of the ports to remove some of the lip.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Similar Content

  • Latest Posts

    • Right, its been a while for updating this car, but I made some small but important progress today. In the end I bought an Ecutek dongle from the Australian distributor Tunehouse (for local hardware support) but have gone with a remote tune from Racebox in the US (because they have done millions of these, and I could not find any tuner where I could access the tune anyway as they are all password locked). The App is reasonably easy to work with, but the PC software reminds me of Haltech's ECU Manager that you need to use with the Plat Pro ECUs, it is a nightmare.  Anyway, I sent the details over, got back a tune file and a request for data logs. I finally got a chance to access a private test track today as they want redline logs in 3rd and 4th, and have sent them back for the first round of reviews. The main difference in the tune is going from 1.0 (stock) to 1.3 bar (19psi), although I'm sure is a lot of other stuff in the background. Keeping in mind this is a dead stock car with 125,000klm, this is what the App's performance test claimed: Before After Interesting to note that both 400m tests had the same terminal speed (158klm/h) but different ETs. And no, the speed limiter seems to be higher than that at 186kl/h. Summary of the key logged parameters for the 3rd and 4th gear runs were: Those little turbos were certainly whizzing at 200,000rpm+.  Also I'm really not that excited about oil pressure 55psi at redline so I think I'll go thicker than 5w30 (nissan recommend 0w20....) and see if that improves it. Other than that (and the big boost spike....) everything looks good as a start to me.
    • Just one more post to show the final result and the original "janky" solution for a laugh. Everything feels really tight and no wobbling at all, very pleased 🙂
    • After drying a few days, time to put her back together 
    • The hot exhaust light will come on not from just the cat being blocked, but it's just a temp sensor, and it's designed to warn you to not do things like park in long grass.   If you've been pushing the motor a bit, it can cause the light to come on.   Second if the cat is rattling, I'd suspect it's not blocked, but instead falling apart inside.   The easiest "fix" until you can get a cat put back in, is to unbolt your one, bash the rest of the insides out, and then bolt it back in.   For a daily driver/street car, I am in agreeance of put a cat in the car. If it were race car I wouldn't care if it were removed.
×
×
  • Create New...