Jump to content
SAU Community

Recommended Posts

1 hour ago, Lithium said:

So this divider extends to the face of the poppet, and there is a full seal between manifold and gate.  Any imperfection there is enough to completely screw any advantages of having a divided housing?

 

It would want to be pretty close fit to not leak through to the other half of the manifold.  Remember the peak pressures associated with the exhaust pulses are rather high.  You can move a lot of gas through a small hole with a high delta P.  Move enough gas and you rob pressure and energy from the pulse that was supposed to go to the turbine.

On the face of (no pun intended) that divider in your picture looks like it should go close enough.  But there's bound to be a large number of such manifolds that weren't made that way, that could lead to poor enough performance for the reputation to be founded.

Here's my manifold if anyone is interested.

Told CRG it was for a twin scroll and they made it accordingly.

My lag could be attributed to the gate being too big. Big old tech 60 mm Tial was off my old setup so may not be ideal size.

Too much off an expensive exercise to change it over a hunch so it's staying put I'm afraid.

received_10156818917305467.jpeg

My take with external waste gates is that the only sure fire way to get 100% sealing is to use 2 gates . I think relying on a divider that varies in temperature is a bit optimistic . With two gates , everything else right , the sealing point is the popet vave on its seat so if it works properly the only exit is via the twin nozzles .

No offence but I don't agree with acoustics and turbo exhaust manifolds . Different story with NA engines but they aren't trying to accelerate exhaust gas pulses into a spinning turbine wheel . Like was discussed here years ago the idea is to have each cylinder blow down into the split scroll with the least pressure ahead of it ie high to low .

The manifold runners are grouped to have two or three runners (I4/I6) set to have the other one or two cylinders not blowing down so the exiting gasses have the least resistance on their way to the blades . An I6 is a good example because the firing order is 153624 so front/back front/back front/back grouping makes it easy .

Obviously Nissan used this to good effect with the RB26s separate 123/456 manifolds and two turbine housings/waste gates . No chance of one group leaking to the other north of their dumps .    

12 minutes ago, discopotato03 said:

No offence but I don't agree with acoustics and turbo exhaust manifolds . Different story with NA engines but they aren't trying to accelerate exhaust gas pulses into a spinning turbine wheel . Like was discussed here years ago the idea is to have each cylinder blow down into the split scroll with the least pressure ahead of it ie high to low .

 

I think you missed the point.  I was taking a verbal shorthand by using the term "acoustics", but I thought I went on to make it pretty plain that the nozzle in the turbine housing is the effective end of the pressurised part of the mainfold.  Thereafter the gases have been accelerated up to turbine speed and there is no feeding back into the other nozzle and back into the other half of the manifold after that.

I otherwise also agree that there's little value in pulse tuning a turbo manifold except to gain the last half percent.

Having said that.....split pulse housings and manifolds by their very existence make a tacit acknowledgement that there is some value in keeping the the pulses apart!

Here's my manifold if anyone is interested.
Told CRG it was for a twin scroll and they made it accordingly.
My lag could be attributed to the gate being too big. Big old tech 60 mm Tial was off my old setup so may not be ideal size.
Too much off an expensive exercise to change it over a hunch so it's staying put I'm afraid.
received_10156818917305467.jpeg


Any pics of it mounted in the bay with turbo?
On 12/22/2016 at 8:44 PM, Lithium said:

So this divider extends to the face of the poppet, and there is a full seal between manifold and gate.  Any imperfection there is enough to completely screw any advantages of having a divided housing?

WhatsApp Image 2016-12-23 at 2.41.16 PM.jpeg

i can guarantee that divider is going to crack off and get stuck in the turbo or in the wastegate

23 hours ago, Lithium said:

If it does it will be the first of his to do that! It would be a remarkable effort to get into the turbo, too.

Yeah be a nice bit of upstream swimming to get into the turbo from there!  Regardless I don't see one ever coming adrift provided it's been welded right from the start.  

My issue with the split design is the fact that it's going to apply pressure to the wastegate plate cock eyed rather than an equal force across it. Whether that causes extra wear or leads to any issues I don't know but if space is not a limiting factor I would definitely go dual wastegate. There are definitely times where single would be a massive advantage predominantly for space, simplicity and cost (2 versus 1 wastegate).

Until someone does a straight back to back comparo we'll never know!

that manifold Lithium posted is mine and was built by SInco in NZ, its going on a RB30 with a 8375 on it.

 

Mike from Sinco has made that manifold design for years and never had any issues. i went that route for cost vs performance. there is no proof that i have seen that shows twin gates will work any better than my 66mm gate setup like that.

  • Like 1
  • 2 weeks later...

righto so I've convinced myself to throw the 1.05a/r 8374 I have sitting in my garage on the car and need to work out how the f**k you're supposed to plumb back twin gates without spending a billion dollars on fab work. I need to have the gates plumbed in. that Sinco manifold with the divider plate may be the go... anyone recommend someone in brisbane for exhaust/intake fab work? ive had bad experiences with several workshops in the past so i'm quite shy about who to go to.

I've found the following manifolds:

garage whifbitz: this looks ideal, but the design of the manifold has very different runner lengths and the cars sounds like a WRX. going from an equal length mines pipe, i can't deal with it. unfortunate because it looks very neat.

article_whif.jpg

 

Sydney motorsport engineering/fullrace etc.: these have one gate out the front, but how do you route the piping back to the dump pipe from here? anyone have any pics of what they've done?

MX%20Performance%20RBtwin.JPG[

or this setup: unknown manifold (looks like 6boost) with both wastegate runners pointing backwards (by scotty on this forum I believe)

Twin gates.jpg

Edited by burn4005

Top one not being equal length is bad.

Middle one wouldn't fit an efr 8374 on I'd hazard a guess.

Bottom one... Gate actuator of front one sits next to gate of rear one... Recipie for disaster...

The answer is.. I don't know. I would recommend jfab engineering in Brisbane for manifolds as he did a great job with mine, though it was iwg.

Why is the bottom gate position so terrible? Plenty is 6 boob manifolds getting around like that. 

I don't think there is an "easy and cheap" way out of this. It's a prick of a job, to do it right and neat takes time. Cough up.

An external gate not designed to take heat? It's bolted to an exhaust manifold and has exhaust gas running through it! It's gonna make sweet FA difference if you have two next to each other. If you're that worried, run the Tial MVS gates and run water through them.

Designed to have a large amount of heat going through one end of it doesn't mean it's designed to have that amount of heat radiating next to the other end of it.

The fact they offer water-cooled ones to me makes me think there's an issue with to much heat running through them. 

Guess I'm overthinking it. I should go read up some max heat specs on some gates

Oh dear seriously dude? ?

So the 900+ degree gas flowing in 1 end and out the other isnt going to heat it up? 

Or the fact its bolted to a flange on a manifold when there is no gas flowing through it will be more than enough heat for it to radiate through it.

Your gate or gates are ALWAYS going to be a similar temperature to your manifold as it's always going to be in contact with it and the exhaust gas. 

 

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now



  • Similar Content

  • Latest Posts

    • Now that the break-in period for both clutch and transmission is nearly over I'd like to give some tips before I forget about everything that happened, also for anyone searching up how to do this job in the future: You will need at least 6 ton jack stands at full extension. I would go as far as to say maybe consider 12 ton jack stands because the height of the transmission + the Harbor Freight hydraulic platform-style transmission jack was enough that it was an absolute PITA getting the transmission out from under the car and back in. The top edge of the bellhousing wants to contact the subframe and oil pan and if you're doing this on the floor forget about trying to lift this transmission off the ground and onto a transmission jack from under the car. Also do not try to use a scissor jack transmission lift. You have to rotate the damn thing in-place on the transmission jack which is hard enough with an adjustable platform and a transmission cradle that will mostly keep the transmission from rolling off the jack but on a scissor lift with a tiny non-adjustable platform? Forget it. Use penetrating oil on the driveshaft bolts. I highly recommend getting a thin 6 point combination (box end + open end) wrench for both the rear driveshaft and front driveshaft and a wrench extension. These bolts are on tight with very little space to work with and those two things together made a massive difference. Even a high torque impact wrench is just the wrong tool for the job here and didn't do what I needed it to do. If your starter bolts aren't seized in place for whatever reason you can in fact snake in a 3/8 inch ratchet + 6 point standard chrome socket up in there and "just" remove the bolts for the starter. Or at least I could. It is entirely by feel, you can barely fit it in, you can barely turn the stupid ratchet, but it is possible. Pull the front pipe/downpipe before you attempt to remove the transmission. In theory you don't have to, in practice just do it.  When pulling the transmission on the way out you don't have to undo all the bolts holding the rear driveshaft to the chassis like the center support bearing and the rear tunnel reinforcement bar but putting the transmission back in I highly recommend doing this because it will let you raise the transmission without constantly dealing with the driveshaft interfering in one way or another. I undid the bottom of the engine mount but I honestly don't know that it helped anything. If you do this make sure you put a towel on the back of the valve cover to keep the engine from smashing all the pipes on the firewall. Once the transmission has been pulled back far enough to clear the dowels you need to twist it in place clockwise if you're sitting behind the transmission. This will rotate the starter down towards the ground. The starter bump seems like it might clear if you twist the transmission the other way but it definitely won't. I have scraped the shit out of my transmission tunnel trying so learn from my mistake. You will need a center punch and an appropriate size drill bit and screw to pull the rear main seal. Then use vice grips and preferably a slide hammer attachment for those vice grips to yank the seal out. Do not let the drill or screw contact any part of the crank and clean the engine carefully after removing the seal to avoid getting metal fragments into the engine. I used a Slide Hammer and Bearing Puller Set, 5 Piece from Harbor Freight to pull the old pilot bearing. The "wet paper towel" trick sucked and just got dirty clutch water everywhere. Buy the tool or borrow it from a friend and save yourself the pain. It comes right out. Mine was very worn compared to the new one and it was starting to show cracks. Soak it in engine oil for a day in case yours has lost all of the oil to the plastic bag it comes in. You may be tempted to get the Nismo aftermarket pilot bearing but local mechanics have told me that they fail prematurely and if they do fail they do far more damage than a failed OEM pilot bushing. I mentioned this before but the Super Coppermix Twin clutch friction disks are in fact directional. The subtle coning of the fingers in both cases should be facing towards the center of the hub. So the coning on the rearmost disk closest to the pressure plate should go towards the engine, and the one closest to the flywheel should be flipped the other way. Otherwise when you torque down the pressure plate it will be warped and if you attempt to drive it like this it will make a very nasty grinding noise. Also, there is in fact an orientation to the washers for the pressure plate if you don't want to damage the anodizing. Rounded side of the washer faces the pressure plate. The flat side faces the bolt head. Pulling the transmission from the transfer case you need to be extremely careful with the shift cover plate. This part is discontinued. Try your best to avoid damaging the mating surfaces or breaking the pry points. I used a dead blow rubber hammer after removing the bolts to smack it sideways to slide it off the RTV the previous mechanic applied. I recommend using gasket dressing on the OEM paper gasket to try and keep the ATF from leaking out of that surface which seems to be a perpetual problem. Undoing the shifter rod end is an absolute PITA. Get a set of roll pin punches. Those are mandatory for this. Also I strongly, strongly recommend getting a palm nailer that will fit your roll pin punch. Also, put a clean (emphasis on clean) towel wrapped around the back end of the roll pin to keep it from shooting into the transfer case so you can spend a good hour or two with a magnet on a stick getting it out. Do not damage the shifter rod end either because those are discontinued as well. Do not use aftermarket flywheel bolts. Or if you do, make sure they are exactly the same dimensions as OEM before you go to install them. I have seen people mention that they got the wrong bolts and it meant having to do the job again. High torque impact wrench makes removal easy. I used some combination of a pry bar and flathead screwdriver to keep the flywheel from turning but consider just buying a proper flywheel lock instead. Just buy the OS Giken clutch alignment tool from RHDJapan. I hated the plastic alignment tool and you will never be confident this thing will work as intended. Don't forget to install the Nismo provided clutch fork boot. Otherwise it will make unearthly noises when you press the clutch pedal as it says on the little installation sheet in Japanese. Also, on both initial disassembly and assembly you must follow torque sequence for the pressure plate bolts. For some reason the Nismo directions tell you to put in the smaller 3 bolts last. I would not do this. Fully insert and thread those bolts to the end first, then tighten the other larger pressure plate bolts according to torque sequence. Then at the end you can also torque these 3 smaller bolts. Doing it the other way can cause these bolts to bind and the whole thing won't fit as it should. Hope this helps someone out there.
    • Every one has seemed to of have missed . . . . . . . The Mazda Cosmo . . . . . . what a MACHINE ! !
    • I might have gone a little more South Efrican.  But this is off topic.   😍😍 FD 😍😍
    • I think you might have skipped a whole vowel sounds there C.
×
×
  • Create New...