Jump to content
SAU Community

Recommended Posts

Injector duty cycle to calculate rough power figure VS actual Dyno graph

So, might seem like a dumb question. I know there is a formula for it... Just not sure which is correct. or the math....

If I am seeing a max injector duty cycle of 82% on 700cc injectors (Rb26 - base fuel pressure), in theory, can you compare this calculated HP figure to that of what the Dyno reads out?

Would i say that 1cc = 1HP, so 0.82% of 700CC = 574HP

Is that fairly accurate?

# never was good at math's

Edited by djvoodoo

Engine horsepower, yes.  Not chassis dyno horsepower.

FI cars run richer so you may not get quite as much as 1HP per CC.  But good enough for estimating injector requirements.  Maybe slightly less reliable for what you're asking about.

So give or take, we'll say 82% duty cycle on 700cc is roughly 520-550 engine HP. At the wheels you'd be looking at mabee 420ish (or about 315rwkw)

More to the point - What if the dyno reads quite low compared to what you are seeing max injector wise? Can they be compared? I'm guessing fuelling and how much fuel is dialled in at the top end is also a factor which can skew duty?. Lets just say i'm running about 11.5 to 11.8 in the top end AFR's.

In more just curious at how many different ways you can calculate wheel HP other than just a dyno number.

I always thought it was 5cc of fuel was required per horse power, so a 550cc injector is good for 110hp per cylinder then multiplied by 6 cylinders was 660hp then times it by .8 if you want to only use 80% duty cycle is 528hp

There is never going to be an exact science but obviously there has to be something close otherwise picking the correct injector would be s stab in the dark 

The fairly rough rule, particularly true for RBs, at least RB26s, is that (given 6 injectors) then the cc size of a single injector is the maximum engine power supported by those injectors.  Factory 440cc injectors will run up to about 440HP.  Plus or minus the usual range of variables of course.  It's rough but good enough.

yes rough rule for approximating the size of injector you need.. but the OP wants to determine how much power his car is making based on injector DC.. that's obsurd.. just as obsurd as a moron on a Facebook page telling someone to install a resistor pack on their high impednace injectors because their car won't crank over.

You can actually do a better job if you can measure the airflow rather than the fuel flow.  Do you have afm's? If you can convert the voltage to a flow you can google any number of calculators to convert the air flow to rwhp or engine hp or whatever.

1 hour ago, djr81 said:

You can actually do a better job if you can measure the airflow rather than the fuel flow.  Do you have afm's? If you can convert the voltage to a flow you can google any number of calculators to convert the air flow to rwhp or engine hp or whatever.

I'm using MAP sensor. May as well do a data log session on the Vipec and look at air flow.

you want to work out power, drag strip.

x weight can going so y speed in z time and k distance (factor in some basic air drag) - that is much more accurate then working out how much power a motor makes based on air flow and fuel usage.

You need to remember a motor is not 100% efficient, and x air/fuel does not equate to a direct 100% energy transfer to mechanical energy - there are losses such as heat due to inefficiencies.

1 hour ago, Dose Pipe Sutututu said:

you want to work out power, drag strip.

x weight can going so y speed in z time and k distance (factor in some basic air drag) - that is much more accurate then working out how much power a motor makes based on air flow and fuel usage.

You need to remember a motor is not 100% efficient, and x air/fuel does not equate to a direct 100% energy transfer to mechanical energy - there are losses such as heat due to inefficiencies.

Certainly will do bud. Just have to work out when!!!

5 hours ago, Dose Pipe Sutututu said:

you want to work out power, drag strip.

x weight can going so y speed in z time and k distance (factor in some basic air drag) - that is much more accurate then working out how much power a motor makes based on air flow and fuel usage.

You need to remember a motor is not 100% efficient, and x air/fuel does not equate to a direct 100% energy transfer to mechanical energy - there are losses such as heat due to inefficiencies.

The correlation between air flow and horsepower is much closer than that between terminal speed and horsepower.  You don't, for example need to compensate for such minor things as drag coefficients, frontal area, gear change, traction, engine torque characteristics etc etc. 

11 hours ago, djr81 said:

The correlation between air flow and horsepower is much closer than that between terminal speed and horsepower.  You don't, for example need to compensate for such minor things as drag coefficients, frontal area, gear change, traction, engine torque characteristics etc etc. 

+1.  And again, anything you use to estimate "power" is going to be "estimated engine horsepower", not hp @ wheels - and I know from experience that often the calculated results often get heavily question because by nature of how crazy low Oz dynos read the crank hp results which get calculated if done correctly are often much higher than people expect from typical @ wheels readings on a Dyno Dynamics.

A thing no one has mentioned here is fuel as well, if you treat the % duty cycle of x size injector = hp described above for 6 cylinder turbos and are running E85 you will get very optimistic results :)

 

 

  • Like 1

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now


  • Latest Posts

    • If you are fine with China turbos, Maxpeedingrods makes a bolt on turbo. Ive had mine for two summers now and it seems to be holding up ok. 
    • Howdy all Im in a little predicament and wondering what everyone’s thoughts are? I’ve had my long block rebuilt and am in the market for a turbo due to my old one having metal shavings from crank bearings (cause of rebuild) go throughout the turbos oil lines and there wheel has a little play. I’m not really aiming for any power, just trying to keep it as oem as possible, but I can’t find a turbo that’s built for the stock ecu or find something that would be a standard replacement. Anyone have any ideas or suggestions 
    • How's everyone going? Just a shout-out introducing myself. I'm James, I live on the north side of Brisbane. I bought an R33 that had been left to rot in someone's front yard for 14 years. Apparently, it has immobiliser/fuel issues. Long story short, it's suffering from a seized engine, plus whatever else turns up once it runs. The car is pretty good considering it sat for so long. It pretty much died after being imported. It has a bunch of Jap parts and a full Top Secret body kit. It's painted Fiat Turchese Festival, or aqua blue if you're not French. Another project to throw money at!
    • So the clockspring is responsible for the indicators cancelling on their own? I thought that was the function of that white thing in the center (any idea what it's called?)
    • Can you log IAT? Whilst WTA coolers have their place, doing any sort of sustained run is not one of them There are fixes that slow down the heat soak, like ice boxes, which don't last that long, and interchillers, which are fairly expensive, up grades to the WTA cooling radiator, which may require a bigger pump, and upgrades to the reservoir size,  and upgrades to the cooling fans, but, it all still heat soaks, and takes ages to come down in hot weather  For a turbo, that isn't locked into WTA like my PD blower is, can you not possibly swap to a nice air to air intercooler????, it would be better for sustained runs then, and have alot less things that could go wrong in my opinion 
×
×
  • Create New...